تاثیر محلول پاشی پتاسیم، سالیسیلیک اسید و گاما آمینو بوتریک اسید بر عملکرد، اجزا عملکرد و جذب نیتروژن، فسفر و پتاسیم در ژنوتیپ های گندم نان با شرایط تنش شوری خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه آزاد اسلامی واحد مهاباد

2 استادیار،گروه زراعت و اصلاح نباتات،دانشگاه آزاد اسلامی واحد مهاباد،

3 دانشیار مرکز تحقیقات کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات آموزش و ترویج کشاورزی، ارومیه، ایران

4 دانشیار بخش کشاورزی، دانشگاه پیام نور- تهران، ایران

5 دانشیار گروه زیست شناسی- دانشگاه ارومیه دانشکده علوم

چکیده

به منظور بررسی تاثیر محلول‌پاشی پتاسیم، سالیسیلیک اسید و گاما آمینو بوتریک اسید بر برخی صفات مورفوفیزیولوژیک و جذب عناصر غذایی ژنوتیپ‌های گندم نان در شرایط تنش شوری خاک، این تحقیق طی دو سال زراعی 97 -1396 و 98 -1397 در ایستگاه تحقیقات کشاورزی میاندوآب واقع در آذربایجان غربی اجرا گردید. آزمایش بصورت اسپلیت پلات در طرح بلوک‌های کامل تصادفی در دو محیط با شوری خاک حدود 8 دسی‌زیمنس بر متر و محیط بدون شوری در سه تکرار اجرا گردید. در این تحقیق کرت-های اصلی شامل تیمارهای محلول‌پاشی با مواد تحریک کننده رشد شامل پتاسیم، گابا، اسید سالیسیلیک، شاهد و کرت‌های فرعی با هفت ژنوتیپ گندم اروم، زارع، میهن، حیدری، MS-89-12، MS-89-13 و MS-91-14 انتخاب و اجرا گردید. نتایج تجزیه واریانس نشان داد که اثرات ساده تنش شوری بر صفات عملکرد دانه معنی‌دار گردید. تیمارهای محلول‌پاشی بر کلیه صفات مورد مطالعه معنی‌دار گردید. همچنین اثرات ساده ژنوتیپ‌های مختلف بر کلیه صفات مورد اندازه‌گیری معنی‌دار گردید. اثرات متقابل سه فاکتور شوری، محلول-پاشی و ژنوتیپ بر تمام صفات اندازه‌گیری شده اثر معنی‌داری داشت. بر اساس نتایج بدست آمده، مقایسات میانگین نشان داد که محلول‌پاشی گابا در شرایط عدم تنش با میانگین 7/11366 کیلوگرم در هکتار در رقم میهن بیشترین عملکرد دانه را تولید نمود، در حالی‌که محلول‌پاشی گابا در شرایط تنش شوری با میانگین 7/1876 کیلوگرم در هکتار در رقم اروم کمترین عملکرد دانه را تولید نمود. نتایج کلی حاکی از کاهش اکثر صفات بر اثر تنش شوری بود . محلول‌پاشی مواد در اکثر صفات موجب افزایش نسبت به شرایط شاهد گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the effect of foliar application of potassium, salicylic acid and gamma aminobutyric acid on yield, yield components and uptake of nitrogen, phosphorus and potassium in bread wheat genotypes under soil salinity stress conditions

نویسندگان [English]

  • Vahid salmanpour 1
  • Soran Sharafi 2
  • Mohammad Rezaei 3
  • Marouf Khalily 4
  • Naser Abbaspour 5
1 PhD student of Islamic Azad University, Mahabad Branch
2 Assistant Professor, Department of Agriculture and Plant Breeding, Islamic Azad University, Mahabad Branch,
3 Associate Professor of Agricultural and Natural Resources Research Center of West Azerbaijan Province
4 Associate Professor, Department of Biotechnology and Plant Breeding, Payame Noor University, Tehran, Iran
5 Associate Professor, Department of Biology, Faculty of Science, Urmia University
چکیده [English]

The effect of foliar application of potassium, salicylic acid and gamma aminobutyric acid on morphophysiological traits and nutrient uptake of bread wheat genotypes under soil salinity stress was studied as a research conducted in agricultural research station in Miandoab, West Azerbaijan during the two cropping years 1396-97 and 1397-98. The experiment was performed as a split plot in a randomized complete block design with three replications under soil salinity (0 and 8 dS / m). Main plots included foliar application with growth stimulants: potassium, GABA, SA, control and subplots included seven genotypes ( Orum, Zare, Mihan, Heydari, MS-89-12, MS -89-13 and MS-91-14). The analysis of variance showed that the simple effects of salinity stress on grain yield and foliar application treatments on all studied traits were significant. Also, the simple effects of different genotypes on all measured traits were significant. The interactions of three factors of salinity, foliar application and genotype had a significant effect on all measured traits. Based on the results, comparison of the means showed that GABA foliar application under non-stress conditions with an average of 11366.7 kg / ha in Mihan cultivar produced the highest grain yield, while GABA foliar application under salinity stress conditions with the average of 1876.7 kg / ha produced the lowest grain yield in Orum cultivar. The overall results showed that most of the traits were reduced due to salinity stress. Foliar application of all the compounds in most traits caused an increase compared to the control conditions.

کلیدواژه‌ها [English]

  • Salinity
  • Potassium
  • GABA
  • Salicylic acid
  • Wheat
  • Foliar application
Abu Saied M, Momjurul Alam Mondal M, Shahidur Rahman Md and Abdul Malek Md. 2018. Foliar application of GABA improve growth and yield of mustard. MOJ Current Research & Reviews, 1(3): 119- 122.
Aghai F, Seyyed Sharifi R and Narimani H. 2020. Evaluation of yield, chlorophyll content and wheat grain filling components under soil salinity, application of uniconazole and biofertilizers. Quarterly Journal of Crops Improvement, 22(2): 269-282. (In Persian).
Ahmadpour Sefidkoohi A, gadjar Sepanlo M and Bahmanyar MA. 2012. The effect of several consecutive applications of organic and chemical fertilizers on nitrogen, phosphorus and potassium uptake and some wheat growth characteristics. Journal of Agricultural Science and Sustainable Production, 24(2): 72- 86. (In Persian).
Akbarpour AA, Dehgani H, Roosta MJ and Amini A. 2015. Evaluation of Characteristics of Several Iranian Bread Wheat Genotypes Using Limited Maximum Likelihood Method under Stress and Non-Salinity Stress Conditions. Iranian Crop Science, 46(1): 57- 69. (In Persian).
Amini A, Amirniya R and Gazvini HA. 2016. Evaluation of the relationship between grain yield and physiological traits related to salinity stress tolerance in bread wheat (Triticum aestivum L.) genotypes. Iranian Journal of Crop Sciences, 17(4): 329- 348. (In Persian).
Amin AA, Rashad S, Fatma HM and Gharib AE. 2008. Changes in morphological, physiological and reproductive characters of wheat and photosynthesis. Australian Journal of Basic and Applied Sciences, 2(2): 252- 261.
Ashraf M and Foolad MR. 2007. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betains and proline. Environmental and Experimental Botany, 59: 206- 216.
Ashraf M, Akram NA, Arteca RN and Foolad R. 2010. The physiological, biological and molecular roles of brassinosteroids and salicylic acid in plant process and salt tolerance. Critical Reviews in Plant Science,  29: 162- 190.
Deewatthanawong R, Nock JF and Watkins CB. 2010. γ-Aminobutyric acid (GABA) accumulation in four strawberry cultivars in response to elevated CO2 storage. Postharvest Biology and Technology, 57(2): 92- 96.
Degl’Innocenti E, Hafsi C, Guidi L and Navari-Izzo F. 2009. The effect of salinity on photosynthetic activity in potassium-deficient barley species. Plant Physiology, 166: 1968- 1981.
De Lacerda CF, Cambraia J, Oliva MA, Ruiz HA and Prisco JT. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49: 107- 120.
Dixit P N and Deli C. 2010. Impact of spatially variable soil salinity on crop physiological properties, soil water content and yield of wheat in a semi arid environment. Australian Journal of Agricultural Engineering. 1: 93- 100.
Francois LE, Grieve CM, Mass EV and Lesch SM. 1994. Time of salt stress affects growth and yield components of irrigated wheat. Agronomy Journal, 86: 100- 107.
Gorbani A, Aminian R and Amini A. 2017. Tolerance to salinity stress of advanced wheat genotypes under hydroponic and field cultivation conditions. Seed and Plant Improvement Journal, 23-1(2): 215- 241. (In Persian).
Grattan SR and Grieve CM. 1992. Mineral nutrient acquisition and response by plants grown in Saline environments. In: Pessarakli, M. (Ed). Handbook of plant and cold stress. Pp: 203- 226.
Hajihashemi SH, Kiarostami KH, Saboora A and Enteshari SH. 2007. Exogenosely applied paclobutrazol modulates growth in salt-stressed wheat plants. Journal of Plant growth Regulation, 53: 117- 128.
Hamid H, Rehman K and Ashraf Y. 2010. Salicylic acid–induced growth and biochemical changes in salt-stressed wheat. Commun. Soil Science Plant Annual, 41: 373- 389.
Hasanuzzaman M, Nahar K and Fujita M. 2013. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahma, P.; Azooz, M. M.; Prasad, M. N. V. (Eds.), Ecophysiology and Responses of Plants Under Salt Stress. Springer. New York. 25- 87.
Hashemi SE, Emam Y and Pirasteh Anoosheh H. 2014. Effect of time and method of salicylic acid application on growth process, yield and yield components of barley (Hordeum vulgare L.) under salinity stress. Crop physiology Journal, 6 (24): 5- 18.
Hassine AB and Lutts S. 2010. Differential responses of saltbush (Atriplex halimus L.) exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. Journal of Plant Physiology, 167(17): 1448- 1456.
Hayat Q, Hayata S H, Irfan M and Ahmad A. 2010. Effect of exogenous salicylic acid under changing environment. A review. Environmental and Experimental Botany, 68: 14- 25.
Hoseyni SZ, Barzgar T, Nikbakht J and Gahramani Z. 2019. Yield components, quality of green bean pods and seeds under conditions of dehydration stress and foliar application of salicylic acid and megafol. Journal of Agricultural Science and Sustainable Production, 29(3): 95- 111. (In Persian).
Imas P and Magan A. 2000. Potash facts in brief. International potash Institue (IPI). Potash Research Institue of India. WWW. IPIPOTASH.ORG.
Jafariyan T and Zaree MJ. 2016. Pretreatment of hydrogen peroxide on some morpho-physiological and biochemical properties of wheat under salinity stress. Journal of Crop Ecophysiology, 10- 3(39): 717- 730. (In Persian).
James RA, Rivelli AR, Munns R and Caemmerer SV. 2002. Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 29: 1393- 1403.
James RA, Caemmerer SA, Condon AG, Zwaet AB and Munns R. 2008. Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Functional Plant Biology, 35: 111- 123.
Jiang H, Du H, Bai Y, Hu Y, Rao Y, Chen CC and Cai Y. 2016. Effects of spatiotemporal variation of soil salinity on fine root distribution in different plant configuration modes in new reclamation coastal saline field. Environmental Science and Pollution Research, 23: 6639- 6650.
Kaydan D, Yagmur M and Okut N. 2007. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi, 13: 114- 119.
Khalilzadeh R, Seyyed Sharifi R and Jaliliyan J. 2017. Study of the interaction of Cycocel and biofertilizers on yield and some agrophysiological characteristics of wheat under soil salinity. Environmental stresses in agricultural sciences. 10(3): 425- 443. (In Persian).
Khan NA, Shabian S, Masood A, Nazar A and Iqbal N. 2010. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 1: 1- 8.
Lacerda CF, Ferreira JFS, Liu X and Suarez DL. 2016. Evapotranspiration as a criterion to estimate nitrogen requirement of Maize under salt stress. Agronomy and Crop Science, 202: 192- 202.
Mashi A, Galeshi S, Zeinali E and Noorinia A. 2008. Salinity effect on seed yield and yield components in four Hull-les barley. Journal of Agricultural Science and Technology, 14: 1- 10.
Munns R and Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651- 681.
Narjesi V, Madjidi Hervan A, Zali AA, Mardi M and Nagavi MR. 2010. Effect of salinity stress on grain yield and plant traits of pure recombinant layers of bread wheat. Iranian Journal of Crop Sciences, 12(3): 291- 304. (In Persian).
Norozi M and Gadjar Sepanlo. 2014. Effect of potassium on yield components of two barley cultivars under saline irrigation conditions. Journal of Water Research in Agriculture, 28(2): 295-306.

Pakar N, Pirasteh Anooshe H and Y Emam. 2014. Effect of different concentrations of salicylic acid on quantitative and qualitative properties of barley under salinity stress. Journal of Crop Production and Processing, 4(14): 191- 201. (In Persian).

Pathak H and Rao DLN. 1998. Carbon and Nitrogen mineralization from added organic matter in saline and alkaline soils. Soil Biology and Biochemistry, 30: 695- 702.
Rameeh V. 2012. Ions uptake, yield and yield attributes of rapeseed exposed to salinity stress. Journal of Soil Science and Plant Nutrition, 12: 851- 861.
Ramos R, Martinez F and Knauf G. 2019. The effects of GABA in plants. Cogent Food & Agriculture. 5, 1.
Ranjbar GH, Pirasteh Anosheh H, Emam Y and Hoseynzadeh SH. 2013. The effect of salinity stress on different growth stages of wheat cultivar Roshan. Crop Production under Environmental Stresses, 5(1): 23- 31. (In Persian).
Sadegipour A. 2017. The effect of methyl jasmonate on the activity of antioxidant enzymes and nutrient content of cowpea under salinity stress. Journal of Crop Improvement. 19(3): 653- 669. (In Persian).
Salehi M, kalate Arabi M and Mosavat SA. 2014. Evaluation of diversity of spring bread wheat genotypes in response to salinity stress in northern Golestan province. Seed and Plant Improvement Journal, 30- 1(2): 305-325. (In Persian).
Shahr ayini A, Shaabanpour M and Saadat S. 2011. Effect of salinity and soil density on the uptake of nitrogen, phosphorus and potassium by wheat. Journal of Soil Research (Soil and Water Sciences), 25(4): 279- 284. (In Persian).
Sharma HS, Fleming C, Selby C, Rao JR and Martin T. 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26(1): 465- 490.
Shekoofa A and Emam Y. 2008. Effect of nitrogen fertilization and plant growth regulators (PGRS) on yield of wheat (cv. Shiraz). Journal of Agriculture Science and Technology. 10(2): 101- 108.
Soltani Y, Saffari VR, Magsoodi Mod AA and Mehrbani M. 2011. Investigation of the effect of foliar application of salicylic acid, ascorbic acid and thiamine on stomatal characteristics and ion leakage in marigold. Proceedings of the 11th National Seminar on Irrigation and Evaporation Reduction. 9 pages.
(In Persian).
Tartoura KAH, Youssef SA and Tartoura EAA. 2014. Compost alleviates the negative effects of salinity via up regulation of antioxidants in (Solanum lycopersicum L). plants. Journal of Plant Growth Regulation,
74: 299- 310.
Ullah Khan S, Bano A, Jalal Ud Di and Gurmani AR. 2012. Abscisic acid and salicylic acid seed treatment as potent inducer of drought tolerance in wheat (Triticum aestivum L.) Pakistan Journal of Botany, 44: 43- 49.
Wang WB, Kim YH, Lee HS, Kim KY, Deng XP and Kwak SS. 2009. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry,47: 570- 577.
Wang Y, Luo Z, Huang X, Yang K, Gao SH and Du R. 2014. Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticultura, 168: 132- 137.
Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F and Mirto A. 2017. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiologia Plantarum, 159: 290- 312. doi: 10.1111/ppl.12513
Xin H, Peiling Y, Shumei R, Yankai L, Guangyu J and Lianhao L. 2016. Quantitative response of oil sunflower yield to evapotranspiration and soil salinity with saline water irrigation. International Journal of Agricultural and Biological Engineering, 9(2): 63- 73.