ارزیابی کارایی برخی باکتری های ریزوسفری گیاهان شورپسند در تعدیل تنش شوری گیاه کینوا (Chenopodium quinoa Willd.).

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیولوژی و بیوتکنولوژی خاک، دانشگاه تبریز

2 گروه علوم خاک - دانشگاه تبریز

3 گروه زراعت ، دانشگاه مراغه

چکیده

سابقه و هدف: گیاه کینوا به عنوان گیاه شورپسند اختیاری به واسطه ارزش غذایی و پتانسیل بالای تولید در شرایط سخت محیطی، در سال‌های اخیر مورد توجه قرار گرفته است. این پژوهش با هدف بررسی اثرات مایه‌زنی برخی باکتری‌های ریزوسفری گیاهان شورپسند بر رشد گیاه کینوا تحت تنش‌ شوری طراحی و اجرا گردید.
مواد و روش‌ها: آزمون گلخانه‌ای به صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار، اجرا شد. در ابتدا بذور کینوا با باکتری‌های انتخاب شده B2, B3, B4, B5, B6) و شاهد بدون باکتری مایه‌زنی شدند و در ادامه چهار سطح شوری (شاهد S1)، 5/7 (S2)، 15 (S3) و 25 (S4) دسی‌زیمنس‌برمتر در گلدان‌ها اعمال گردید. پس از تکمیل دوره رشد رویشی شاخص‌های رشدی، عملکردی و تغذیه‌ای گیاه اندازه‌گیری شد.
یافته‌ها: بر اساس نتایج، با افزایش سطوح شوری شاخص‌های رشد (به‌جز کلروفیل) و ترکیب یونی (به‌جز سدیم) گیاه کینوا کاهش یافت. استفاده از باکتری‌ها منجر به افزایش معنی‌دار کلروفیل (تا 5/10 درصد)، ارتفاع (تا 43/15 درصد)، وزن تر ریشه (تا 27/20 درصد)، وزن تر و خشک اندام هوایی (به ترتیب تا 27/10 و 36/11 درصد)، عملکرد بیولوژیک (تا 41/10 درصد)، کل زیتوده خشک (تا 12 درصد)، عملکرد دانه (تا 07/11 درصد) و مقدار جذب سدیم، پتاسیم، فسفر اندام هوایی به ترتیب تا 31/36، 11/22، 52/10 درصد در مقایسه با تیمار شاهد شد.
نتیجه‌گیری: در این آزمایش استفاده از باکتری‌ها منجر به بهبود معنی‌دار تحمل گیاه کینوا به تنش شوری شدند و در این میان اثر باکتری B3 در ارتقای شاخص‌های رشد و عملکرد کینوا بیشتر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation the efficiency of some rhizospheric bacteria of halophyte plants in modulating the salinity stress of quinoa (Chenopodium quinoa Willd.)

نویسندگان [English]

  • Davoud Saghafi 1
  • Mohammad Reza Sarikhani 2
  • Shahin Oustan 2
  • Ezat Esfandiari 3
1 PhD student of Soil Biology and Biotechnology, University of Tabriz.
2 Department of Soil Science-University of Tabriz
3 Agronomy, Maragheh U
چکیده [English]

Background & Objective: Quinoa as halophyte plant has received more attention in recent years due to its nutritional value and high production potential in harsh environmental conditions. In this research was designed and implemented with the aim of investigating the effects of inoculation of some rhizosphere bacteria of halophyte plants on the growth of quinoa plant under salt stress.
Materials & Methods: The greenhouse test was carried out as factorial in the form of complete random design in three replications. First, quinoa seeds with selected bacteria (B1, B2, B3, B4, B5 and B6) were inoculated and then four salinity levels of 0, 7.5, 15 and 25 (dS/m) were applied in the pots. Finally some growth and nutritional related parameters were measured.
Results: Growth indices (except chlorophyll index) and ionic composition (except sodium) of quinoa plant decreased with increasing salinity levels. The use of bacteria led to a significant increase in chlorophyll (up to 10.5%), height (up to 15.43%), root fresh weight (up to 20.27%), and fresh and dry weight of shoot (up to 10.27 and 11.36 %, respectively), biological yield (up to 10.41 %), total dry weight (up to 12 %), grain yield (up to 11.07 %) and sodium, potassium, phosphorus of shoot was up to 36.31, 22.11, and 10.52 % respectively compared to the control treatment.
Conclusion: In this experiment, PGPB led to a significant improvement in the tolerance of quinoa to salinity stress, and among them B3 was higher in improving the growth and yield indices of quinoa.

کلیدواژه‌ها [English]

  • salinity stress
  • rhizospheric bacteria
  • quinoa
  • growth indicators
  • yield
Abdelaziz ME, Kim D, Ali S, Fedoroff NV and Al-Babili S. 2017. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Science, 263:107-115.
Akhtar SS, Andersen MN, Naveed M, Zahir ZA and Liu F. 2015. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Functional Plant Biology, 42(8):770–781.
Ali Ahyaei M and Behbehanizadeh AA. 1993. Description of soil chemical analysis methods (Volume 1). Publication 893, Soil and Water Research Institute, Agricultural Research and Training Organization, Ministry of Agriculture, Tehran.
Almeida DM, Oliveira MM and Saibo NJ. 2017. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40:326-345.
Ashraf M, Hameed M, Arshad M, Ashraf Y and Akhtar K. 2006. Salt tolerance of some potential forage grasses from Cholistan Desert of Pakistan. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Tasks for Vegetation Science 40. Springer Verlag, Dordrecht, 31–54.
Baset Mia MA. Shamsuddin ZH and Maziah M. 2010. Use of Plant Growth Promoting Bacteria in Banana: A NewInsight for Sustainable Banana Production. International Journal of Agriculture and Biology, 12(3):459-467.
Bayat F, Shiran B and Belyaev DV. 2011. Overexpression of HvNHX2, a vacuolar Na/H antiporter gene from barley, improves salt tolerance in Arabidopsis thaliana. Journal of the American Chemical Society, 5(4):428-432.
Boscaiu M, Estrelles E, Soriano P and Vicente O. 2005. Effects of salt stress on the reproductive biology of the halophyte Plantago crassifolia. Biologia Plantarum, 49:141–143.
Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J and Arora NK. 2019. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Frontiers in Terrestrial Microbiology, 10: 2791.
Eisa S, Hussin S, Geissler N and Koyro HW. 2012. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Journal of the American Chemical Society, 6(2):357-368.
Flowers TJ. 2004. Improving crop salt tolerance. Journal of Experimental Botany, 55:307–319.
Forouzi A, Ghasemnezhad A and Ghorbani Nasrabad R. 2019.  Effects of Growth Stimulator Microbes on Growth and Ions Concentration of Stevia under Salinity Stress Conditions. International Journal of Horticultural Science and Technology, 6(2): 217-236.
Geissler N, Hussin S and Koyro HW. 2009a. Interactive effects of NaCl salinity, elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environmental and Experimental Botany, 65:220–231.
Geissler N, Hussin S, Koyro HW. 2010. Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta, 231: 583–594.
Gorai M, Ennajeh M, Khemira H and Neffati M. 2010. Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmites australis plants. Flora, 205:462–470.
Gul M, Wakeel A, Steffens D and Lindberg S. 2019. Potassium‐induced decrease in cytosolic Na+ alleviates deleterious effects of salt stress on wheat (Triticum aestivum L.). Plant Biology, 4: 1-23.
Gulzar S, Khan MA, Ungar IA and Liu X. 2005. Influence of salinity on growth and osmotic relations of Sporobolus ioclados. Pakistan Journal of Botany, 37:119–129.
Gupta A, Rai S, Bano A, Khanam A, Sharma S and Pathak N. 2021. Comparative Evaluation of Different Salt-Tolerant Plant Growth-Promoting Bacterial Isolates in Mitigating the Induced Adverse Effect of Salinity in Pisum sativum. Biointerface Research in Applied Chemistry, 11: 13141 – 13154.
Gupta, P.K. 2000. Soil, plant, water and fertilizer analysis Agrobios, New Delhi, India.
Hariadi Y, Marandon K, Tian Y, Jacobsen SE and Shabala S. 2011. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 62:185–193.
Hirose Y, Fujita T, Ishii T and Ueno N. 2010. Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chemistry, 119:1300–1306.
Jeon JS, Lee SS, Kim HY, Ahn TS and Song HG. 2003. Plant growth promoting in soil by some inoculated microorganism. Journal of Microbiology, 271-276.
Jones BJ. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, USA.
Kader MA and Lindberg S. 2005. Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. Journal of Experimental Botany, 56(422): 3149-3158.
Khademi Z, Rezaei H, Malkouti MJ and Mohajer Milani P. 2000. Optimum nutrition of rapeseed. Agricultural Education Publication, Ministry of Agriculture, Tehran.
Khan MA and Abdullah Z. 2003. Salinity-sodicity induced changes in reproductive physiology of rice (Oryza sativa) under dense soil conditions. Environmental and Experimental Botany, 49:145–157.
Khan MA, Ungar IA and Showalter AM. 2005. Salt stimulation and tolerance in an intertidal stem-succulent halophyte. Journal of Plant Nutrition, 28:1365–374.
Koyro HW, Geissler N, Seenivasan R and Huchzermeyer B. 2011. Plant Stress Physiology; Physiological and Biochemical Strategies Allowing to Thrieve Under Ionic Stress. In: Pessarakli M (ed) Handbook of Plant and Crop Stress, 3th edn. CRC press, Taylor & Francis Group, 1051–1094.
Koyro HW. 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56:136–146.
Läuchli A, and Grattan SR. 2007. Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht, Netherlands.
Mahdi I, Fahsi N, Hafidi M, Allaoui A and Biskri L. 2020. Plant Growth Enhancement using Rhizospheric Halotolerant Phosphate Solubilizing Bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 Isolated from Chenopodium quinoa Willd. Microorganisms, 8: 948-969.
Mansour MMF. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum, 43: 491–500.
Marcum KB. 2006. Saline tolerance physiology in grasses. In: Khan MA, Weber DJ (eds) Ecophysiology of High Salinity Tolerant Plants. Task Veg Sci. 40. Springer Verlag, Dordrecht, 157–172.
Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales JA, Udall JA, Fairbanks DJ and Bonifacio A. 2009. Characterization of Salt Overly Sensitive 1 (SOS 1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 52:647– 657.
Mayak S. Tirosh T and Glick BR. 2004. Plant growth-promoting that confer resistance to water stress in tomatoes and peppers. Plant Science, 166: 525–530.
Mujica A, Jacobsen SE and Izquierdo J. 2001. Resistencia a factores adversos de la quinua, in Quinua (Chenopodium quinoa Willd.). In: Mujica A, Jacobsen SE, Izquierdo J, Marathee JP (eds) Ancestral Cultivo Andino, Alimento del Presente y Futuro. FAO, UNA-Puno, CIP, Santiago, 162–183.
Munns R and Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651–681.
Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167: 645–63.
Nadeem SM, Zahir ZA, Naveed M and Arshad M. 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology, 53: 1141–1149.
Nadeem SM, Zahir ZA, Naveed M, Arshad M and Shahzad SM. 2006. Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Plant Soil and Environment, 25: 78-84.
Naveed M, Mitter B, Reichenauer TG, Wieczorek K and Sessitsch A. 2014. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp, FD17. Environmental and Experimental Botany, 97: 30–39.
Patten CL and Glick BR. 2002. Role of pseudomonas putida indoleacetic acid in development of the host plant root system. Applly of  Environmental Microbiology, 68: 3795–3801.
Penrose DM and Glick BR. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiology of Plant, 118:10–15.
Prado FE, Boero C, Gallarodo M and Gonzalez JA. 2000. Effect of NaCl on germination, growth and soluble sugar content in Chenopodium quinoa willd seeds. Botanical Bulletin  Academia Sinica, 41:27–34.
Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS and Khan MA. 2008. Productivity enhancement of salt-affected environments through crop diversification. Land Degradation and Development, 19: 429–453.
Ramadoss D, Lakkineni VK, Bose P, Ali S and Annapurna K. 2013. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus, 2: 6.
Ramos J, Lopez MJ and Benlloch M. 2004. Effect of NaCl and KCl salts on the growth and solute accumulation of the halophyte Atriplex nummularia. Plant Soil, 259:163–168.
Reddy MP, Shah MT and Patolia JS. 2008. Salvadora persica, a potential species for industrial oil production in semiarid saline and alkali soils. Industrial Crops and Products, 28:273–278.
Rengasamy P. 2006. World salinization with emphasis on Australia. Journal of Experimental Botany, 57: 1017–1023.
Rozema J and Flowers TJ. 2008. Crops for a salinized world. Science, 322:1478–1480.
Saghafi D, Ghorbanpour M and Asgari Lajayer B. 2018. Efficiency of Rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress. Jurnal of Soil Science and Plant Nutrition, 18(1): 253–268.
Saghafi D, Delangiz N, Asgari Lajayer B and Ghorbanpour M. 2019. An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech, 9:261.
Sarikhani MR, Oustan S, Ebrahimi M and Aliasgharzad N. 2018. Isolation and identification of potassium‐releasing bacteria in soil and assessment of their ability to release potassium for plants. European Journal of Soil Science, 69(6): 1078-1086.
Shabala S, Bose J, Fuglsang AT and Pottosin I. 2015. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. Journal of Experimental Botany 67(4): 1015-1031.
Sun Y, Lindberg S, Shabala L, Morgan S, Shabala S and Jacobsen SE. 2017. A comparative analysis of cytosolic Na+ changes under salinity between halophyte quinoa (Chenopodium quinoa) and glycophyte pea (Pisum sativum). Environmental and Experimental Botany, 141: 154-160.
Tanji KK. 2002. Salinity in the soil environment. In: Läuchli A, Lüttge U (ed) Salinity: environment– plants– molecules. Kluwer Academic Publishers, Dordrecht, 21–51.
Tester M and Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Annual Botany-London, 91:503–527.
Xie Y, Han Sh, Li X, Amombo E and Fu J. 2017. Amelioration of Salt Stress on Bermuda grass by the Fungus Aspergillus aculeatus. Molecular Plant-Microbe Interactions, 30(3): 245-254.
Zahir ZA, Akhtar SS, Ahmad M and Nadeem SM. 2012. Comparative Effectiveness of Enterobacter aerogenes and Pseudomonas fluorescens for mitigating the depressing effect of brackish water on maize. International Journal of Agriculture and Biology, 14: 337–344.
Zhu JK. 2003. Regulation of ion homoestasis under salt stress. Current Opinion in Plant Biology, 6: 441–445.