پایداری عملکرد و اجزای عملکرد ژنوتیپ های گندم نان با استفاده از روش‌ AMMI

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شهید مدنی آذربایجان

2 گروه زراعت و اصلاح نباتات، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

چکیده

چکیده
اهداف: معرفی ارقام پرمحصول و پایدار از نظر عملکرد و اجزای عملکرد دانه برای شرایط آب و هوایی مختلف از اهداف مهم این پژوهش می­باشد.
 
مواد و روش­ها: به منظور بررسی پایداری عملکرد و اجزای عملکرد، 20 ژنوتیپ گندم نان بهاره در پنج محیط مختلف با دو تکرار در  قالب طرح بلوک­های کامل تصادفی در سال­های زراعی 1393-1390 به­ مدت سه سال در ایستگاه تحقیقات کشاورزی دانشگاه آزاد اسلامی واحد تبریز و میانه مورد مطالعه قرار گرفتند.
 
یافته­ها: با توجه به معنی­دار بودن اثرمتقابل ژنوتیپ × محیط، تجزیه پایداری برای عملکرد و اجزای عملکرد به روش­ (Additive Main effects and Multiplicative Interaction) AMMI انجام گرفت. بررسی پایداری با استفاده از روش AMMI  نشان داد از نظر وزن هزاردانه ژنوتیپ­ N-75-4 و در رده­های بعدی شماره­های N-75-5، N-75-17 و  N-75-1 به عنوان ژنوتیپ­های پایدار محسوب می­شوند. در تعداد دانه سنبله، ژنوتیپ­های شماره N-75-6 و N-75-4 و در رده­های بعدی N-75-1، N-75-9 و  N-75-14 به عنوان ژنوتیپ­های پایدار محسوب می­شوند. از نظر تعداد سنبله در مترمربع، ژنوتیپ­های شماره N-75-6 و N-75-16 و در رده بعدی شماره­های N-75-1 و N-75-5  به عنوان ژنوتیپ­های پایدار محسوب می­شوند. در عملکرد دانه، ژنوتیپ­های شماره N-75-6  و در رده بعدی  N-75-5، N-75-1 و  N-75-17 به عنوان ژنوتیپ­های پایدار محسوب شدند.
 
نتیجه­گیری: براساس نتایج حاصله از پایداری AMMI، ژنوتیپ­­های N-75-1 (Tajan)،N-75-5 (Yang87-158) و N-75-6 (Rayan 89) از نظر عملکرد دانه و اجزای عملکرد با 623/5، 475/6 و 083/4 تن در هکتار پایدار محسوب شده و با داشتن عملکرد بیشتر از میانگین کل، قابل توصیه جهت استفاده در برنامه­های به­نژادی گندم به عنوان یکی از والدین پرمحصول و پایدار در برنامه تلاقی­ها و یا معرفی به زراعین منطقه جهت کشت بهاره در مناطق سرد استان آذربایجان شرقی  و استان­های همجوار با اقلیم مشابه می­باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Stability of Yield and Yield Components in Bread Wheat Cultivars by Using AMMI Method

نویسندگان [English]

  • Alireza tarinejad 1
  • Varharam Rashidi 2
  • Neda Aglmand 2
1
2
چکیده [English]

Abstract
Background and Objective: Selection of wheat cultivars with stable seed yield and seed yield components in different climatic conditions was  aim of this research.
 
Methods and Materials: To evaluate the seed yield  and seed  yield  components stability of 20 spring wheat lines, this experiment  was done using RCBD with two replications under  five conditions for three years(2010-2013) in Islamic Azad University research  stations( Tabriz and Mianeh).
 
Results: Due to significant Genotype X Environment interaction (G X E), stability analysis for seed yield and seed yield  components was done using AMMI method (Additive Main effects and Multiplicative Interaction)  and the results showed that the lines N-75-4, N-75-5 ,N-75-17 and N=75-1 are the stable for 1000KW, respectively , the lines N-75-6 ,N-75-4 , N-75-1, N-75-9 and N-75-14 are the most stable for number of seed per spike , the lines N-75-6 ,N-75-16 , N-75-1 and N-75-5 have stability of producing spike per square, respectively, and the lines N-75-6 , N-75-5, N-75-1  and N-75-17 have stable seed yield, respectively.
 
Conclusion: According to the results of AMMI method the lines N-75-1(Tajan), N-75-5 (Yang87-158) and N-75-6 (Rayan 89) with the seed yield of 6.475 , 5.623 and 4.083 t/ha had the most stability respectively, so on the basis of having the stable yield and seed yield more than average of total lines, those lines can be used as a parental lines  in wheat breeding program and secondary can be cultivated in the spring
in cold regions of East Azerbaijan and similar places also.
 
 

کلیدواژه‌ها [English]

  • ASV
  • Biplot
  • Seed Weight
  • Genotype×Environment
  • Yield
Akbarpour AA, Dehgani H and Sorkhi Lallou B. 2011. Investigating univariate and multivariate stability parameters of barley (Hordeum voulgare L.) promising genotypes in cold climate of Iran. Iranian Journal of Field Crop Science, 14(2): 155-170. (In Persian).
Bhartiya A, Aditya JP, Kumari V, Kishore N, Purwar JP, Agrawal A and Kant L. 2017. GGE biplot & AMMI analysis of yield stability in multi-environment trial of soybean [Glycine max (L.) Merrill] genotypes under rainfed condition of north western Himalayan hills. JAPS, Journal of Animal and Plant Sciences, 27(1):227-38.
Fentie M, Assefa A and Belete K. 2013. AMMI analysis of yield performance and stability of finger millet genotypes across different environments. World Journal of Agricultural Sciences, 9(3): 231-237.
Gauch HG. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Publication, Amesterdam, the Netherlands.
Gauch HG and Zobel RW. 1988. Predictive and postdictive success of statistical analysis of yield trials. Theoretical Applied Genetic, 76: 1-10.
Islam MR, Anisuzzaman M, Khatun H, Sharma N, Islam Z, Akter A and Biswas PS. 2014. AMMI analysis of yield performance and stability of rice genotypes across different haor areas. Eco. Friendly Agril. J. 7(02): 20-24.
Karadavut U, Palta C,  Kavur maci Z and Block Y. 2010. Some grain yield parameters of multi-environmental trials in faba bean (Vicia faba) genotypes. International Journal of Agriculture and biology, 12(2): 217-220.
Kadhem F A and Baktash F Y. 2016. Ammi analysis of adaptability and yield stability of promising lines of bread wheat (Triticum aestavum L.). The Iraqi Journal of Agricultural Sciences, 47:35-43.
Kendal E and Tekdal S. 2018. AMMI model to assess durum wheat genotypes in multi-environment trials. Journal of Agriculture, Science and Technology, 20: 153-166.
Mohammadi R, Armiyon M and Ahmadi MM. 2011. Genotype×Environment interaction for grain yield of durum wheat genotypes by using AMMI models. Seed and Plant Improvement Journal, 27(1): 183-198. (In Persian).
Najafi Mirak, T. 2011. Study of grain yield stability of bread wheat genotypes in cold agro-climatic zone of Iran. Iranian Journal of Crop Sciences, 13(2): 380-394. (In Persian).
Perkins j M and Jinks JL. 1971. Specificity of the interaction of genotype with contrasting environments. Heredity, 26(3): 463-474.
Soares A A,  De Sousa Reis M, De Oliveira Cornélio  V, César Soares P, Rodrigues Vieira A and  Alves de Souza M. 2007. Stability of upland rice lines in Minas Gerais, Brazil. Crop Breeding and Applied Biotechnology, 7: 394-398.
Soltani A. 2013. Application of SAS software in statistical analysis. Ferdosi University Press of Mashad, Iran.
Tadele T, Gashaw S, Belay A and Amanuel T. 2018. Application of AMMI for grain yield stability analysis in large speckled bean genotypes grown in midlands of bale zone. Chemical and Biomolecular Engineering, 3(3):17-21.
Yan W, Hunt LA, Sheng Q and Szlavnics Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40: 597-605.
Yan W. 2001. GGEBiplot—A Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal, 93: 1111–1118.
Yan W. 2002. Singular-value partitioning in biplot analysis of multi-environment trial data. Agronomy Journal, 94: 990-996.
Yan W and Hunt L A. 2002. Biplot analysis of multi environment trial data. Pp. 289-303. In: Kang M S (ed). Quantitative genetics, genomics and plant breeding, CAB International.
Yan W and Rajcan I. 2002.Biplot evaluation of test site and trial relations of soybean in Ontario. Crop Science, 42: 11-20.
Yan W and Kang M S. 2003. GGE Biplot Analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL. Pages 288.
Yan W and Tinker N A. 2005. An integrated system of biplot analysis for displaying, interpreting, and exploring genotype by environment interactions. Crop Science, 45: 1004-1016.
Yan W, Kang MS, Ma B, Woods S and Cornelius PL. 2007. GGE biplot vs. AMMI analysis of genotype by environment data. Crop Science, 47: 643-655.
Zali H, Sabaghpour SH, Farshadfar A, pezeshkpour P, Safikhani M, Sarparast R and Hashem Beygi A. 2013. Stability analysis of chickpea genotypes using ASV parameter compare to other stability methods. Iranian Journal of Field Crop Science, 44(4): 21-30.