بررسی چند شکلی ژنتیکی در ارقام گلرنگ با استفاده از نشانگرRAPD

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده کشاورزی دانشگاه فردوسی مشهد

2 دانشکده کشاورزی شیروان دانشگاه فردوسی

3 دانشگاه فردوسی مشهد

چکیده

     به منظور بررسی چند شکلی ژنتیکی بین ارقام داخلی و خارجی گلرنگ با استفاده از نشانگر RAPD تعداد 20 رقم گلرنگ مورد بررسی قرار گرفت. در این آزمایش از 17 آغازگر10 نوکلئوتیدی استفاده شد و در نهایت تعداد 279 نوار قابل امتیاز­دهی ایجاد شد که 256 نوار در محدوده­ای بین 100 و 3000 جفت باز را شامل می­شد. نمودارهای حاصل از روش UPGMA  ارقام را به چهار گروه اصلی تقسیم کرد. گروه اول دو رقم خارجی، و گروه دوم 2 رقم بومی داخلی و یک رقم اصلاح شده را شامل می­شد. گروه سوم ارقام زراعی محلی، ارقام وحشی و اصلاح شده را شامل می­شد. گروه چهارم نیز شامل دو رقم اصلاح شده ایرانی اصفهان و رقم KW4  بود. بیشترین فاصله ژنتیکی (863/.) بین رقم داخلیKW4  و رقم خارجی S710 مشاهده شد. ولی در اکثر ارقام داخلی فاصله ژنتیکی کمی دیده شد، که ممکن است به علت وجود منشا و اجداد مشترک در مورد این ارقام باشد. وجود فاصله زیاد (7578/.) در برخی ارقام وحشی و اصلاح شده داخلی ایران نشان­دهنده پتانسیل بالای ذخایر ژنتیکی داخلی در تولید هیبریدهای مناسب می­باشد. نتایج نشان می­دهد در حالیکه بین فاصله جغرافیایی و ژنتیکی در ارقام داخلی و خارجی مورد مطالعه در این بررسی همبستگی وجود دارد، ولی این همبستگی در ارقام داخلی مشاهده نمی­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Detection of DNA Polymorphism of Safflower by Using of RAPD Markers

نویسندگان [English]

  • M Rahimi 1
  • SH Marashi 1
  • M Farsi 1
  • M Ghorbanzadeh 2
  • M Rahimi 3
1
2
3
چکیده [English]

In order to investigate the genetic polymorphism among 18 important Iranian and two foreign cultivars of safflower, RAPD marker was used. In this experiment 17 primer sets (ten mer) were used for amplification in reactions.  Out of 279 markable bands, 256 bands were found in the range of 100 to 3000 bp. Cluster diagrams produced by means of the unweighted pair-group method arithmetic average (UPGMA) divided the lines into 4 main classes. Class 1 included two exotic genotypes and class 2 included two Iranian landrace lines and one bred cultivated Iranian. Class 3 included 13 wild and local domestic Iranian genotypes.  One improved Iranian line (kw4) and Isfahan line placed in class 4. The most genetic diversity (0.863) was observed between Iranian landrace (KW4) and exotic genotype (S710). But in most Iranian landraces, the genetic diversity was low (0.241). The result showed that there is a relationship between the genetic diversity and geographical distances in exotic and indogenous genotypes. But this reletion is not among indogenous cultivars. That might be due to originating from the same parent.
 

کلیدواژه‌ها [English]

  • Genetic Diversity
  • Safflower
  • RAPD
امیدی اح، قنادها م، احمدی م و پیغمبری س­ع، 1378 . بررسی صفات مهم زراعی ارقام گلرنگ -بهاره از طریق روشهای چند متغیره آماری. مجله علوم کشاورزی ایران. جلد 30. شماره 4. صفحه­های 817 -826 .
باقری ا، 1377. بررسی تنوع ژنتیکی در جمعیت­های بومی گلرنگ ایران. پایان­نامه کارشناسی ارشد، دانشکده کشاورزی. دانشگاه تهران.
بختیاری رمضانی م، لباسچی م .ح، نعمتی ن، 1385. تاثیر تراکم کشت بر عملکرد و اجزای عملکرد در شرایط دیم فصلنامه علمی و پژوهشی و تحقیقات گیاهان داروئی و معطر ایران. جلد 22، شماره 2، صفحه 155 تا 160.
عبدمیشانی س و شاه نجات بوشهری ع، 1377. اصلاح نباتات تکمیلی (جلد دوم). بیوتکنولوژی گیاهی. انتشارات دانشگاه تهران.
معالی امیری ر، یزدی صمدی ب، قنادها م. ر و عبدمیشاهی س، 1380. بررسی تنوع ژنتیکی ارقام مختلف گلرنگ با استفاده از روش RAPD-PCR. مجله علوم کشاورزی ایران. جلد 32، شماره 4، سال 1380. صفحه 737تا 745.
Amini F, Saeidi G and Arzani A, 2007. Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica 163: 21-30.
Botstein D, White RL, Skolnick M and Davis RW, 1980. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am.J. Hum. Genet. 32: 314-331.
Das M, Bhattacharya S and Pal A, 2004. Generation and characterization of SCARs by cloning and sequencing of RAPD products: a strategy for specific marker development in bamboo. Annals of Botany 95(5): 835- 841.
Deputy JC, Ming RH, Ma Z, Liu M, Fitch MW, Wang R, Manshargtm M and Stiles JI, 2002. Molecular markers for sex determination 111.
Dnyaneshwar W, Preeti C, Kalpana J and Bhushan P, 2006. Development and Application of RAPD-SCAR marker for identification of Phyllanthus emblica L. Biol.Pharm. Bull. 29:2313-2316.
Grilli Caiola M, Caputo P and Zanier R, 2004. RAPD Analysis in Crocus sativus L. Accessions and Related Crocus Species. Biologia Plantarum 48:375-380.
Hoarce Y, Gallego R and Ferrer E, 1996.  A comparative analysis of the genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica 88:107-115.
Huff DR, Peakall R and SmousePE, 1993.  RAPD variation within and among population of outcrossing buffalograss (Buchyloe dactylodes (Nutt) Engelman). Theoretical and Applied Genetics 9:827-834.
Johnson RC, Kisha TJ and Evans MA, 2007. Characterizing safflower germplasm with AFLP molecular markers. Crop Sci. 47: 1728-1736
Kato K and Yokoyama H, 1992. Geographical variation in heading characters among wheat landraces adaptability. Theoretical and Applied Genetics 84:259-265.
Khan MA, Von S, Witzke-Ehbrecht B, Maass L and Becker HC, 2009. Relationships among different geographical groups, agromorphology, fatty acid composition and RAPD marker diversity in Safflower (Carthamus tinctorius). Genet. Resour. Crop. Evol. 56:19-30.
Latha R, Subramanian SR, Radha R and Swaminathan MS, 2002. Genetic relationship of Porteresia coarctata tateoka using molecular markers. Plant Biosyst. 136:339-348.
Lee M, Godshalk EB and Lamkey KR, 1984. Association of restriction fragment length polymorphism among maize inbreeds with agronomic performance of their crosses. Crop Science 29: 1067-1071.
Mahasi MJ, Wachira FN, Pathak RS and Riungu T, 2009. Genetic polymorphism in exotic safflower (Carthamus tinctorious L.) using RAPD markers. Crop Science 1(1): 008-012.
Nagaoka T and Ogihara Y, 1997. Applicability of inter – simple sequence repeat polymorphism in wheat for use as DNA marker in comparison to RFLP and RAPD marker. Theoretical and Applied Genetic 94: 597-602.
Parentoni SN, Maglhaes JV, Pacheco CAP, Santos MX, Abadic T, Gama EFG, Lopes MA and Paira E, 2001. Heterotic groups based on yield – specific combining ability data and phylogenetic relationship determined by RAPD markers for 28 tropical maize open pollination varieties. Euphtica. 121: 197-208.
Peakall R and SmousePE, 2007. GenALEx V6.1: Genetic Analysis in Excel. Population Genetic Software for teaching and research. Canberra: AustralianNationalUniversity
Powell W, Morgante M, Andr C, Hanafey M, Vogel J, Tingey S and Rafalaski A, 1996.  The comparison or RFLP, RAPD, AFLP, and SSR markers for germplasm analysis. Mol Breed. 2:225-238.
Rameau C, Denoue D, Fraval F, Haurogne K, Josserand J, Laucou V, Batge S and Murfet C., 1998. Genetic mapping in pea. 2.Identification of RAPD and SCAR markers linked to genes affecting plant. Theoretical and Applied Genetics 97:916-928.
Ranade SA, Verma A, Gupta M and Kumar N, 2002. RAPD profile analysis of betel vine cultivars. Biol.Plant. 45:523-527.
Richard A, Vierling A and Nguyen H. T, 1996.Use of RAPD markers to determine the genetic diversity of diploid, wheat genotypes. Theoretical and Applied Genetics 35:835-838
Rumsay JR, Multani DS, Lyen BR, 1996. RAPD –PCR identification of verticillium dahliae isolates with differential pathogenecity on cotton. Aust.J. Agrc .Res. 47:681-693.
Saghai-Maroof MA, Soliman K, Jorgensen RA and Allard RW, 1984. Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. PNAS 81: 8014-8018.
Samal S, Rout GR, Nayak S, Nanda RM, Lenka P. C and Das P, 2003. Primer screening and optimization for RAPD analysis of cashew. Biol.Plant. 46:301-304.
Scheef EA, Casler M. D and Jung G, 2003. Development of species-specific SCAR markers in Bentgrass. Crop Science 43:345-349.
Sehgal D, Raina SN, 2005. Genotyping safflower (Carthamus tinctorius) cultivars by DNA fingerprints. Euphytica. 146:67–76
Thormann CE, fetrria ME and Camargo HEA, 1994. Comparision of RFLP and RAPD markes to estimating genetic relation ship within and among cruciferous. Theoretical and Applied Genetics 88:973-980.
Vilatersana R, Garnatje T, Susanna A and Garcia-Jacas N, 2005. Taxonomic problems in Carthamus (Asteraceae): RAPD markers and sectional classification.Botanical Journal 147(3):375-383.
Wachira F, Waugh NR, Powell W andHackett CA,1995.  Detection of genetic diversity in tea (Camellia sinensis), using RAPD markers. Genome 38(2): 201–210 
Welsh J, Peterson C and Clelland MMc, 1991. Polymorphisms generated by arbitrarily primed PCR in the mouse application to strain identification in genetic maping. Nucleic Acid Research 19:303-3060.
Williams CE and Ciair DA, 1993. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessioes of lycopersicon esculentum. Genome 36,619-630.
Williams JGK, Kubelinke AR, Livak KA, Rafalski JA and Tingey SV, 1990.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids. Res. 18:6531-6535.
Wu M, 1999. Genetic diversity and its relationship to hybrid performance and heterosis in Maize as revealed by AFLP and RAPDS. Maize Genetic Cooperation Newsletter 74.
Yang YX, Wu W, Zheng WYL, Chen L, Liu RJ and Huang CY, 2007. Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analysed by inter-simple sequence repeats (ISSRs). Genet Resour Crop Evol 54: 1043-1051
Yazdi - Samadi B and Abd.Mishani C, 1991. Cluster analysis in safftawer. Proceeding of Indian. Society of Oilseed Research, 119.126.
Yeh FC, Yang RC and Boyle T, 1999. POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Molecular Biology and Biotechnology center, University of Alberta, Canada. http://www.ualberta.ca.