بررسی سازگاری جو آبی در استان‌های همدان و لرستان با شرایط تغییر اقلیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران.

2 استاد گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران.

3 استادیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران.

چکیده

مقدمه و اهداف: هدف مطالعه حاضر شبیه ­سازی ارزیابی سازگاری جو آبی به تغییرات اقلیمی در استان­های همدان و لرستان  ،   برآورد عملکرد جو آبی در آینده تحت سناریو­های مختلف اقلیمی و ارائه­ی راهکارهایی برای بهبود عملکرد جو آبی در شرایط تغییر اقلیماست.
مواد و روش ها: مطالعه در 9 شهرستان استان­های همدان و لرستان انجام شد. شبیه­سازی رشد و نمو محصول جو با استفاده از مدل APSIM انجام شد. اقلیم آینده شهرستان­ها با استفاده از مدل اقلیمی HadGEM2-ES، سناریوهای RCP4.5 و RCP8.5 و روش AgMIP برای دوره 2070 -2040 شبیه­سازی شد. راهکارهای سازگاری شامل ارقام (آذران، جلگه و بهمن) و تاریخ کاشت­های مختلف (1 مهر، 15 مهر، 30 مهر، 15 آبان و 30 آبان) بودند.
 
یافته ها: نتایج اعتبارسنجی مدل زراعی APSIM نشان داد که مدل با دقت قابل قبولی عملکرد دانه را تحت تیمارهای مختلف شبیه­سازی کرد به طوری که nRMSE برابر با 02/15 درصد بود. نتایج نشان داد که تغییرات اقلیمی باعث کاهش عملکرد محصول جو در استان­های مورد بررسی به میزان 4- و 2- درصد به ترتیب برابر تحت سناریوی RCP4.5 و RCP8.5 شد. در زمینه ترکیب­های مختلف، در سراسر مناطق مورد مطالعه و سناریوهای اقلیمی، تغییرات عملکرد از 3/17- درصد در ترکیب تاریخ کاشت 30 آبان و رقم آذران و 9/20+ درصد در ترکیب تاریخ کاشت 1 مهر و رقم جلگه متفاوت بود.
 
نتیجه گیری:   براساس نتایج کسب شده  باید راهکارهای سازگاری در آینده برای جلوگیری از کاهش محصول جو آبی در استان­های مورد بررسی در نظر گرفته شود.  به طورکلی، در دوره آینده ترکیب­­های بهینه در مناطق گرم مانند شهرستان پلدختر تاریخ کاشت 1 مهر و رقم آذران، در مناطق معتدل مانند خرم­آباد و کوهدشت تاریخ کاشت 1 مهر و رقم جلگه و در سایر مناطق که اکثرا جز مناطق سرد هستند تاریخ کاشت 30 آبان و رقم بهمن می­باشند.  .
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Irrigated Barley for Adaptation to Climate Change in Hamadan and Lorestan provinces

نویسندگان [English]

  • Ali Valipour 1
  • Khosro Azizi 2
  • Sajjad Rahimi-Moghaddam 3
1 Ph.D. Student of Dept. of Production Engineering and Plant Genetics, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
2 Prof., Dept. of Production Engineering and Plant Genetics, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
3 Assist. Prof., Dept. of Production Engineering and Plant Genetics, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
چکیده [English]

Background & Objective: The current research aimed to assess the adaptation of irrigated barley to climate changes in Hamadan and Lorestan provinces.  Estimating future irrigated barley yield under different climate scenarios and providing solutions to improve irrigated barley yield under climate change conditions.
 
Materials & Methods: The study was conducted in 9 counties of Hamadan and Lorestan provinces. APSIM model was employed to simulate of barley growth and development. The future climate (2040-2070) of the counties was projected using HadGEM2-ES climate model, RCP4.5 and RCP8.5 scenarios, and AgMIP methodolog. Adaptation strategies included different cultivars (Azaran, Jolgeh and Bahman) and sowing dates (23-Sep, 7-Oct, 22-Oct, 6-Nov, and 21-Nov).
 
Results: The validation results of the APSIM model showed that the model accurately simulated grain yield under different treatments, so that the nRMSE was equal to 15.02%. The results indicated that climate change decreased barley grain yield in the studied provinces by -4% and -2% under RCP4.5 and RCP8.5, respectively. For various combinations, across all studied locations and climate scenarios, yield changed from -17.3% for 21-Nov × Azaran cultivar and +20.9% for 23-Sep and Jolgeh cultivar.
 
Conclusion: Based on the results obtained, future adaptation strategies should be considered to prevent the decline in irrigated barley yields in the provinces under study. Overall, in the future, optimal combinations were 23-Sep and Azaran cultivar for warm regions such as Pol-e Dokhtar, 23-Sep and Jolgeh cultivar for temperate areas such as Khorramabad and Kuhdasht, and, 21-Nov and Bahman cultivar for the other locations which are mostly cold regions.
 

کلیدواژه‌ها [English]

  • Agmip Methodology
  • APSIM Model
  • Barley Cultivars
  • Hadgem2-ES Climate Model
  • Sowing Date
Ahmadi H, Ghalhari GF and Baaghideh, M. 2019a. Impacts of climate change on apple tree cultivation areas in Iran. Climatic Change, 153 (1): 91-103. https://doi.org/10.1007/s10584-018-2316-x
Ahmadi M, Dadashi Roudbari A, Akbari Azirani, T and Karami J. 2019b. The Performance of the HadGEM2-ES Model in the Evaluation of Seasonal Temperature Anomaly of Iran under RCP scenarios. Journal of the Earth and Space Physics, 45 (3): 625-644. https://doi.org/10.22059/JESPHYS.2019.279480.1007109 (In Persian with English abstract).
Almorox J, Benito M and Hontoria C. 2005. Estimation of monthly Angstrom–Prescott equation coefficients from measured daily data in Toledo, Spain. Renewable Energy, 30: 931–936. https://doi.org/10.1016/j.renene.2004.08.002
Amiri S, Eyni-Nargeseh H, Rahimi-Moghaddam S and Azizi K. 2021. Water use efficiency of chickpea agro-ecosystems will be boosted by positive effects of CO2 and using suitable genotype× environment× management under climate change conditions. Agricultural Water Management, 252: 106928. https://doi.org/10.1016/j.agwat.2021.106928
Anonymous, 2017. Lorestan province crop statistics, Agricultural Jihad Organization of Lorestan Province. (In Persian with English abstract).
Archontoulis SV, Miguez FE and Moore KJ. 2014. Evaluating APSIM maize, soil water, soil nitrogen, manure, and soil temperature modules in the Midwestern United States. Agronomy Journal, 106 (3): 1025–1040. https://doi.org/10.2134/agronj2013.0421
Attri SD and Rathore LS. 2003. Simulation of impact of projected climate change on wheat in India. International Journal of Climatology, 23: 693–705. https://doi.org/10.1002/joc.896
Bento VA, Ribeiro AF, Russo A, Gouveia CM, Cardoso RM and Soares PM. 2021. The impact of climate change in wheat and barley yields in the Iberian Peninsula. Scientific reports, 11 (1): 15484. https://doi.org/10.1038/s41598-021-95014-6
Callens C, Fernandez-Goméz J, Tucker MR, Zhang D and Wilson ZA. 2023. Heat stress responses vary during floret development in European spring barley cultivars. Frontiers in Plant Science, 13: 918730. https://doi.org/10.3389/fpls.2022.918730
Chen CQ, Qian CR, Deng AX and Zhang WJ. 2012. Progressive and active adaptations of cropping system to climate change in Northeast China. European Journal of Agronomy, 38: 94–103. https://doi.org/10.1016/j.eja.2011.07.003
Chenu K, Deihimfard R and Chapman SC. 2013. Large-scale characterization of drought pattern: a continent-wide modelling approach applied to the Australian wheatbelt–spatial and temporal trends. New Phytologist, 198 (3): 801–820. https://doi.org/10.1111/nph.12192
Deihimfard R, Rahimi-Moghaddam S and Chenu K. 2019. Risk assessment of frost damage to sugar beet simulated under cold and semi-arid environments. International Journal of Biometeorology, 63: 511-521. https://doi.org/10.1007/s00484-019-01682-5
Deihimfard R, Rahimi-Moghaddam S, Eyni-Nargeseh H and Collins B. 2023a. An optimal combination of sowing date and cultivar could mitigate the impact of simultaneous heat and drought on rainfed wheat in arid regions. European Journal of Agronomy, 147: 126848. https://doi.org/10.1016/j.eja.2023.126848
Deihimfard R, Rahimi-Moghaddam S, Javanshir F and Pazoki A. 2023b. Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments. Journal of Arid Land, 15: 545–561. https://doi.org/10.1007/s40333-023-0056-x
Dettori M, Cesaraccio C, Motroni A, Spano D and Duce P. 2011. Using CERES-wheat to simulate durum wheat production and phenology in southern Sardinia, Italy. Field Crops Research, 120 (1): 179–188. https://doi.org/10.1016/j.fcr.2010.09.008
Dietzel R, Liebman M, Ewing R, Helmers M, Horton R, Jarchow M and Archontoulis S. 2016. How efficiently do corn-and soybean-based cropping systems use water? A systems modeling analysis. Global Change Biology, 22: 666-681. https://doi.org/10.1111/gcb.13101
Ejaz M and von Korff M. 2017. The genetic control of reproductive development under high ambient temperature. Plant Physiology, 173: 294–306. https://doi.org/10.1104/pp.16.01275
Gao Z, Feng HY, Liang XG, Zhang L, Lin S, Zhao X, Shen S, Zhou LL and Zhou SL. 2018. Limits to maize productivity in the North China Plain: A comparison analysis for spring and summer maize. Field Crops Research, 228: 39–47. https://doi.org/10.1016/j.fcr.2018.08.022
Gaydon DS, Wang E, Poulton PL, Ahmad B, Ahmed F, Akhter S, Ali I, Amarasingha RP, Chaki AK, Chen C and Choudhury BU. 2017. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research, 204: 52-75. https://doi.org/10.1016/j.fcr.2016.12.015
Ghahreman N, Tabatabaei M and Babaeian I. 2015. Investigation of uncertainty in the IPCC AR5 precipitation and temperature projection over Iran under RCP Scenarios. Investigation of uncertainty in the IPCC AR5 precipitation and temperature projection over Iran under RCP Scenarios. In: Proceedings of Common Future under Climate Change, 7-10 Jul., Paris, France.
Gong DP and Gong WL. 2020. Impacts of Climate Change on Maize Production in Northeast China and Countermeasures. Journal of Agriculture, 10: 35–38. https://doi.org/10.3389/fenvs.2022.954940
Hemming MN, Walford SA, Fieg S, Dennis ES and Trevaskis B. 2012. Identification of high temperature-responsive genes in cereals. Plant Physiology, 158: 1439-1450. https://doi.org/10.1104/pp.111.192013
Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C and Moore AD. 2014. APSIM–evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62: 327-350. https://doi.org/10.1016/j.envsoft.2014.07.009
Ji RP, Zhang YS, Jiang LX, Zhang SJ, Feng R, Chen PS, Wu, JW and Mi N. 2012. Effect of climate change on maize production in Northeast China. Geographical Research, 31: 290–298. https://doi.org/10.1016/j.apcbee.2014.01.073
Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JN, Meinke H, Hochman Z and McLean G. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3-4): 267-288. https://doi.org/10.1016/S1161-0301(02)00108-9
Lee JY, Marotzke J, Bala G, Cao L, Corti S, Dunne JP, Engelbrecht F, Fischer E, Fyfe JC, Jones C, Maycock A,  Mutemi J, Ndiaye O, Panickal S and Zhou E. 2021: Future Global Climate: Scenario-Based Projections and NearTerm Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R and Zhou B (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 553–672, https://doi.org/10.1017/9781009157896.006.
Liu Z, Hubbard KG, Lin X and Yang X. 2013. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology, 19 (11): 3481-3492. https://doi.org/10.1111/gcb.12324
Liu Z, Yang X, Xie R, Lin X, Li T, Batchelor WD, Zhao J, Zhang Z, Sun S and Zhang F. 2021. Prolongation of the grain filling period and change in radiation simultaneously increased maize yields in China. Agricultural and Forest Meteorology, 308–309: 108573. https://doi.org/10.1016/j.agrformet.2021.108573
Mendenhall W, Sincich T and Boudreau NS. 1996. A second course in statistics: regression analysis. Prentice Hall Upper Saddle River, New Jersey.
Moghaddam H, Oveisi M, Mehr MK, Bazrafshan J, Naeimi MH, Kaleibar BP and Müller-Schärer H. 2023. Earlier sowing combined with nitrogen fertilization to adapt to climate change effects on yield of winter wheat in arid environments: Results from a field and modeling study. European Journal of Agronomy, 146: 126825. https://doi.org/10.1016/j.eja.2023.126825
Rahimi-Moghaddam S and Azizi K. 2018. Early sowing date as a strategy for improvement of maize yield and maize physiological and phonological characteristics in climate change conditions at Kermanshah Province. Journal of Crop Production, 10 (4): 91-105. https://doi.org/10.22069/EJCP.2018.12078.1930 (In Persian with English abstract).
Rahimi-Moghaddam S, Dehimfard R, Azizi K and Roostei M. 2021. Characterizing spatial and temporal trends in drought patterns of rainfed wheat (Triticum aestivum L.) across various climatic conditions: a modelling approach. European Journal of Agronomy, 129: 126333. https://doi.org/10.1016/j.eja.2021.126333
Seifert E. 2014. OriginPro 9.1: Scientific Data Analysis and Graphing Software—Software Review. Journal of Chemical Information and Modeling, 54 (5): 1552–1552. https://doi.org/10.1021/ci500161d
Valizadeh J, Ziaei SM and Mazloumzadeh SM. 2014. Assessing climate change impacts on wheat production (a case study). Journal of the Saudi Society of Agricultural Sciences, 13(2): 107-115. https://doi.org/10.1016/j.jssas.2013.02.002
Wallach D and Goffinet B. 1987. Mean squared error of prediction in models for studying economic and agricultural systems. Biometrics, 43: 561–576. https://doi.org/10.2307/2531995
Willmott CJ and Matsuura K. 2005. Advantages of the mean absolute error (MAE) over theroot mean square error (RMSE) in assessing average model performance. Climate Research, 30: 79–82. https://doi.org/10.3354/cr030079
 Willmott CJ. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63: 1309–1313. https://doi.org/10.1175/15200477(1982)063%3C 1309:SCOTEO%3E2.0.CO;2