برهم‌کنش تلقیح مایکوریزایی و فسفر بر شاخص‌های رشدی، تولید ریزغده و جذب عناصر غذایی سیب‌زمینی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت دانشکده کشاورزی دانشگاه یاسوج

2 گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه یاسوج

3 بخش تحقیقات گیاهان زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی همدان، سازمان تحقیقات و آموزش کشاورزی، همدان

4 گروه بیماری شناسی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان

5 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه یاسوج

چکیده

   مایکوریزا می‌تواند به عنوان ابزاری کارآمد در جهت افزایش بهره­وری مصرف عناصر غذایی در راستای کشاورزی پایدار استفاده ‌شود. این آزمایش با هدف بررسی برهم‌کنش سطوح فسفر و قارچ مایکوریزا بر شاخص­های رشدی و تولید ریزغده و جذب عناصر غذایی گیاهچه­های سیب­زمینی در گلخانه، به صورت فاکتوریل بر پایه طرح کاملا تصادفی در سه تکرار در سال 1393 در مرکز تحقیقات کشاورزی و منابع طبیعی استان همدان اجرا گردید. عامل اول شامل تلقیح با مایکوریزا گونه Rhizophagus irregularis (تلقیح و عدم تلقیح) و عامل دوم میزان فسفر (965/0، 482/0، 241/0و 12/0 میلی­مولار در محلول هوگلند براساس H2PO-4) به ترتیب معادل 100، 75، 50 و 25 درصد میزان فسفر در محلول هوگلند بود. نتایج نشان داد که بیشترین میزان استقرار گیاهچه (3/98 %)، تعداد برگ (3/13)، تعداد ریزغده (9/8)، وزن کل ریزغده در هر بوته (2/53 گرم)، ارتفاع اندام‌های هوایی (6/54 سانتی­متر)، میزان فسفر در ماده خشک ریزغده (38/0%) و برگ (363/0%) در تیمار تلقیح و 75 درصد فسفر بود که با تیمار تلقیح و 100 درصد فسفر اختلاف معنی­دار نداشت. تلقیح با قارچ مایکوریزا باعث افزایش معنی‌دار میزان نیتروژن ریزغده و برگ، درصد ماده خشک و وزن ریزغده نسبت به تیمار عدم تلقیح شد. با توجه به اینکه بین تیمار تلقیح در سطح 75 درصد و 100 درصد فسفر اختلاف معنی­داری وجود نداشت، بنابراین استفاده از قارچ مایکوریزا می‌تواند مصرف نهاده­های کشاورزی را بدون کاهش معنی­دار عملکرد، کاهش دهد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Interaction of Mycorrhizal Inoculation and Phosphorus on Growth Characteristics, Production of Mini-tuber and Nutrients Uptake of Potato

نویسندگان [English]

  • Mostafa Ghobadi 1
  • Mohsen Movahhedi Dehnavi 2
  • Khosro Parvizi 3
  • Dust Morad Zafari 4
  • Ali Reza Yadavi 5
1
2
3
4
5
چکیده [English]

Mycorrhiza can be used as an efficient tool to increase nutrients productivity to achieve sustainable agriculture. This experiment conducted to investigate the interaction of phosphorus and mycorrhiza on growth characteristics and production of mini-tuber and nutrients uptake of seedlings under greenhouse condition. The experiment was arranged as factorial in completely randomized design with three replications in agricultural and natural resource research center of Hamadan in 2015. First factor included of inoculation with mycorrhizal fungi, Rhizophagus irregularis, (inoculated and non-inoculated) and the second factor was the amount of phosphorus (0.965, 0.482, 0.241 and 0.12 mM phosphorus according to H2PO-4 in Hoagland solution (100, 75, 50 and 25 percent of Hoagland complete phosphorus concentration (HCPC), respectively). The results showed that the maximum values of seedling establishment (98.3%), number of leaves (13.3), the number of mini-tubers (8.9), the total weight of mini-tubers per plant (53.2 g), shoot height (54.6 cm), phosphorus in mini-tubers dry matter (%0.38) and leaves (%0.363) observed in phosphorus 75% HCPC and inoculation treatment and no significant differences was seen relative to phosphorus 100% HCPC and inoculation treatment. Inoculation with mycorrhizal fungi significantly increased the mini-tubers and leaves nitrogen, dry matter and weight of mini-tuber relative to non-inoculated treatments. Generally, respect to that there was no significant difference between 75% and 100% phosphorus in inoculation treatment, the applying of mycorrhizal fungi can reduce agricultural inputs consumption without any significant decrease in yield.
 

کلیدواژه‌ها [English]

  • Hoagland
  • Mini-tuber
  • Ph Mycorrhiza
  • Posphorus
  • Seedling Establishment
  • Symbiosis
 
Allen JW and Shachar-Hill Y, 2009. Sulfur transfer through and arbuscular mycorrhiza. Plant Physiology, 149:549–560.
Bharadwaj DP, Lundquist PO and Alstrom S, 2008. Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biology & Biochemistry, 40: 2494–2501.
Brachmann A and Parniske M, 2006. The most important symbiosis on earth. Public Library of Science Biology, 4: 19-31.
Caris C, Hordt W, Hawkins HJ, Romheld V and George E, 1998. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza, 8:35–39.
Dechassa N, Schenk MK, Claassen N and Steingrobe B, 2003. Phosphorus efficiency of cabbage (Brassica oleraceae L. var. Capitat), carrot (Daucus carota L.) and potato (Solanum tuberosum L.) plant and soil. Journal of Plant Nutrition and Soil Science, 250: 215-224.
Douds DD, Nagahashi G, Reider C and Drinkwater LE, 2007. Inoculation with arbuscular mycorrhizal fungi increases the yield of potato in a high P soil. Biological Agriculture and Horticulture, 25: 67-78.
Ekelof J, 2007. Potato yield and tuber set as affected by phosphorus fertilization. Master project in the Horticultural Science Program, 2- 20. (30 ECTS).
Emami, A. 1996. Methods of Plant Analysis (Vol. I). Publication No. 982, Soil and Water Research Institute, Agricultural Research and Education Organization, Ministry of Agriculture, Tehran, Iran. (In Persian).
Ewing, E.E. 1997. Potato. Pp. 295-340. In Wien, H.C (ed). The physiology of vegetable crop. CABI publishing.
Food and Agriculture Organization of the United Nations. 2013. FAO Statistical Yearbook. Available in: http://www.fao.org/statistics/en/
Farzana Y and Radizah O, 2005. Influence of Rhizobacterial inoculation on growth of the sweet potato cultivar. On line Journal of Biological Sciences, 1(3): 176-179.
Food and Agriculture Organization of the United Nations. 2015. Statistical pocketbook. World food and Agriculture. p 28.
Galloua A, Mosquerab HPL, Cranenbrouckc S, Suarezb JP and Declerck S, 2011. Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiological and Molecular Plant Pathology, 76: 20-26.
Ghobadi M, jahanbin S, Oliaii H, Motalebifard H and Parvizi K, 2014. Effect of Phosphorus Bio­­fertilizers on yield and yield components of potato. Sustainable Agriculture and Production Science, 23(2): 125-138. (In Persian).
Ghobadi M, jahanbin S, Oliaii H, Motalebifard H and Parvizi K, 2012. Effect of Phosphorus Bio­­fertilizers on yield and Phosphorus Uptake in potato. Water and Soil Science, 21(2): 117-130.
Gholamhosini M, Ghalavand A, Dolatabadian A, Jamshidi E and Khodaei-Joghn A, 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Management, 117: 106– 114.
Govindarajulu M, Pfeffer P, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ and Shacharhill Y, 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435:819–823.
Harley JL, 1989. The significance of mycorrhiza. Mycological Research, 92, 129–139.
Hawkins JH, Johansen A and George E, 2000. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil, 226:275–285.
Heidari M and Karami V, 2014. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress Saudi Society of Agricultural Sciences, 13:9-13.
Hodge A, 2009. Root decisions. Plant Cell Environ, 32:628–640.
Jansa J, Mozafar A and Frossard E, 2003. Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomic, 23:481–488.
Larkin RP, 2008. Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato. Soil Biology and Biochemistry, 40: 1341-1351.
Lee YJ and George E, 2005. Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant Soil, 278:361–370.
Ludwig-Muller J, 2010. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. Pp.169-190. In: koltai H and kampulink Y (eds). Arbuscular mycorrizas physiology and function.
McArthur DA and Knowles NR, 2003.  Influence of species of vesicular arbuscular mycorrhizal fungi and phosphorus nutrition on growth, development, and mineral nutrition of potato (Solanum tuberosum L.). Plant Physiology, 102:771-782.
Munoz F, Mylavarapu RS and Hutchinson CM, 2005. Environmentally responsible potato production systems: a review. Journal Plant Nutrition. 28(8): 1287–1309
Neumann E and Eckhard G, 2010. Nutrient Uptake: The Arbuscular Mycorrhiza Fungal symbiosis as a Plant Nutrient Acquisition Strategy. Pp. 137-167. In: koltai H and kampulink Y (eds) Arbuscular Mycorrhizas: Physiology and Function.
Ortas I and Akpinar C, 2011. Response of maize genotypes to several mycorrhizal inoculums in terms of plant growth, nutrient uptake and spore production. Journal of Plant Nutrition, 34: 970–987.
Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N and Bucher M, 2001. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 414: 462-466.
Richardson AE, 2009. Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs. Plant Soil, 322:17–24.
Rochange S, 2010. Strigolactones and Their Role in Arbuscular Mycorrhizal Symbiosis. pp. 73-90. In:  koltai H and kampulink Y (eds) Arbuscular mycorrizas physiology and function.
Ryan NA, Deliopoulos T, Jones P and Haydock PPJ, 2003. Effects of a mixed-isolate mycorrhizal inoculum on the potato- potato cyst nematode interaction. Annals of Applied Biology, 143: 111-119.
Sarikhani MR and Aliasgharzad N, 2012. Comparative effects of two arbuscular mycorrhizal fungi and K fertilizer on tuber starch and potassium uptake by potato (Solanum tuberosum L.). International Journal of Agriculture: Research and Review, 2(3):125-134.
Smith SE, Smith FA and Jakobsen I, 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133:16–20.
Smith SE and Read DJ, 2008. Mycorrhizal Symbiosis. Academic Press, Cambridge, UK.
Subramanian KS and Charest C, 1999. Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed andwell-watered conditions. Mycorrhiza, 9:69–75.
Vosatka M and Gryndler M, 1999. Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Applied Soil Ecology, 11: 245-251.
Wang B, Funakoshi DM, Dalpe Y and Hamel C, 2002. Phosphorus-32 absorption and translocation to host plants by arbuscular mycorrhizal fungi at low root-zone temperature. Mycorrhiza, 12:93–96.
Yao MK, Desilets H, Charles MT, Boulangerand R and Tweddell RJ, 2003. Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza, 13: 333-336.