Abadia J, Eugenio A, Tsipouridis C, Bruggemann W, Neguerole J and Marangoni B. 1998. Novel approaches for the control of iron cholorosis in fruit tree crops, Final Report, 144 p.
Ali Dib T, Monneveux PH, Acevedo J and Nachil M. 1994. Evaluation of proline analysis and chlorophyll fluorescence quenching measurements as drought tolerance indicator in durum wheat (Triticum turgidum L.). Euphytica, 79: 65-73.
Bavaresco L and Poni S. 2003. Effect of calcareous soil on photosynthesis rate, mineral nutrition, and source- sink ratio of table grape. Journal of Plant Nutrition, 5: 747-753.
https://doi.org/10.1081/PLN-120024269
Bozorgi HR. 2012. Study effects of nitrogen fertilizer management under nano iron chelate foliar spraying on yield and yield components of eggplant (Solanium melongena L.). ARPN Journal of Agricultural and Biological Science, 7(4): 233-237.
Caballero R, Ordovás J, Pajuelo P, Carmona E and Delgado A. 2007. Iron Chlorosis in Gerber as Related to Properties of Various Types of Compost Used as Growing Media. Communications in Soil Science and Plant Analysis, 38: 2357-2369.
https://doi.org/10.1080/00103620701588494
Chohura P, Kołota E and Komosa A. 2007. The effect of different source of iron on nutritional value of greenhouse tomato fruit grown in peat substrate. Journal of Fruit and Ornamental Plant Research, 67(1): 55-61. DOI: 10.2478/v10032-007-0030-8
Elkins R and Fichtner E. 2016. Causes and Control of Lime-induced Fe Deficiency in California Fruit and Nut Crops. University of California Agriculture and Na tural Resources Publication, 21637.
Garnica M, Bacaicoa E, Mora V, San Francisco S, Baigorri R, Zamarreño AM and Garcia-Mina JM. 2018. Shoot iron status and auxin are involved in iron deciency-induced Phyto siderophores release in wheat. BMC Plant Biology, 18(1):105.
https://doi.org/10.1186/s12870-018-1324-3
Genty B, Briantais JM and Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects, 99: 87–92.
https://doi.org/10.1016/S0304-4165(89)80016-9
Gülser F, Yavuz Hİ, Gökkaya TH and Sedef M. 2019. Effects of iron sources and doses on plant growth criteria in soybean seedlings. Eurasian Journal of Soil Science, 8(4): 298-303.
https://doi.org/10.18393/ejss.582231
Karimian M, Mir B, Bidranameni F and Keshtehgar A. 2020. Effects of Manure and Different Intercropping Patterns on Quantitative and Qualitative Yield of Roselle (Hibiscus Sabdariffa) and Cowpea (Phasaeolous vulgaris). Crop Science Research in Arid Regions, 2(1): 113-125 (In Persian). https://doi.org/
10.22034/csrar.2020.119091
Li J, Cao X, Jia X, Liu L, Cao H, Qin W and Li M. 2021. Iron decency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca catechu L. Frontiers in Plant Science, 12.
https://doi.org/10.3389/fpls.2021.710093
Lucena J, De Aberasturi MJ and Gárate A. 1991. Stability of chelates in nutrient solutions for drip irrigation. Iron Nutrition and Interactions in Plants. Netherlands Springer, 63-67.
https://doi.org/10.1007/978-94-011-3294-7_7
Moghadam A, Vattani H, Baghaei N and Keshavarz N. 2012. Effect of Different Levels of Fertilizer Nano_Iron Chelates on Growth and Yield Characteristics of Two Varieties of Spinach (Spinacia oleracea L.): Varamin 88 and Viroflay. Research Journal of Applied Sciences. Engineering and Technology, 4(22): 4813-4818.
Murgia I, Arosio P, Tarantino D and Soave C. 2012. Biofortification for combating ‘hidden hunger’ for iron. Trends In Plant Science, 17: 47-55.
Ngan HTM, Tung HT, Le BV annd Nhut DT. 2020. Evaluation of root growth, antioxidant enzyme activity
and mineral absorbability of carnation (
Dianthus caryophyllus “Express golem” cultured in two culture systems supplemented with iron nanoparticles. Scientia Horticulturae, 272(15): 109612.
https://doi.org/10.1016/j.scienta.2020.109612
Pandey AC, Sanjay S and Yadav R. 2010. Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. Journal of Experimental nanoscience, 5(6): 488-497.
https://doi.org/10.1080/17458081003649648
Peyvandi M, Parande H and Mirza M. 2011. Comparison of Nano Fe Chelate with Fe Chelate Effect on Growth Parameters and Antioxidant Enzymes Activity of
Ocimum basilicum. New Cell Mol Biotechnology, 1(4): 1-12.
http://dorl.net/dor/20.1001.1.22285458.1390.1.4.3.7
Pinto A, Mota Ad, De Varennes A and Pinto F. 2004. Influence of Organic Matter on the Uptake of Cadmium, Zinc, Copper and Iron by Sorghum Plants. Science of the Total Environment, 326: 239-247.
https://doi.org/10.1016/j.scitotenv.2004.01.004
Prasad TN, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Raya Reddy K, Sreeprasad TS, Sajanlal PR and Pradeep T. 2012. Effect of nano scales zink oxide on the germination, growth and yield of peanut. Journal Plant Nutrition, 35(1): 905-927.
Rojas CL, Romera FJ, Alcantara E, Perez-Vicente R, Sariego C, García-Alonso JI and Marti G. 2008. Efficacy of Fe (o, o-EDDHA) and Fe (o, p-EDDHA) isomers in supplying Fe to strategy I plants differs in nutrient solution and calcareous soil. Journal of agricultural and food chemistry, 56(22): 10774-10778.
https://doi.org/10.1021/jf8022589
Voysest O. 2000. Breeding of beans (Phaseolus Vulgaris L.) Legacy of Latin American Varieties 1930- (1999). Cali, Valle, Colombia: International Center for Tropical Agriculture.
Zuluaga MYA, Cardarelli M, Rouphael Y, Cesco S, Pii Y and Colla G. 2023. Iron nutrition in agriculture: From synthetic chelates to bio-chelates.
Scientia Horticulturae, 312: 111833.
https://doi.org/10.1016/j.scienta.2023.111833.