Comparison of the role of Steinernema carpocapsae and Bacillus thurengiensis in Control of Tuta absoluta under Laboratory and Greenhouse conditions

Document Type : Research Paper

Authors

1 Member of science

2 member of sciense

3 member of science

Abstract

Background and objective: The tomato leafminer, Tuta absoluta is a devastating key pest of tomato, and its damage may reach up to 100%. Here, the potential of the infective juveniles (IJs) of the entomopathogenic nematode Steinernema carpocapsae species on different larval stadia of T. absoluta was studied under laboratory conditions and the ability of most effective nematode concentration when applied in the greenhouse conditions.
 
Material and Methods: In the in vitro, the six concentrations of third-infective juveniles S. carpocapsae (0,125, 200, 355, 632 and 1124 IJs/ml) were tested against the three larval instars, L2, L3 and L4 of T. absoluta. In the greenhouse test, three treatments included; S. carpocapsae (1124 IJs/ml), Bacillus thuringiensis (0.25%, Belthirul 32% WP, Probelte Co.) selected from among the four tested Bt options and control in a completely randomized design with six replicates were conducted. 
 
 
Results: In the Invitro, forty-eight hours after infection, the entomopathogenic nematode was able to infect all instars of the pest. With increasing density of S. feltiae, the pest larva mortality also increased with a significant difference at 1% probability level. The percentage mortality of L2, L3 and L4 at the highest concentration of nematodes (1124 IJs) were 43.5, 78.8 and 93.2%, respectively. In the Invivo,​​ at the lowest concentration of nematodes (125 IJs) were 16.8, 26.7, and 30.3%.The percentage mortality of different T. absoluta larval stages by S. carpocapsae and B. thuringiensis treatments were 77.5%±2.9  and 40%±13.7   with a significant difference at 1 % probability level.
 
Conclusion: The results indicate the potential of S. carpocapsae as a native entomopathogenic nematode could be used in an integrated management measure in controlling of the T. absoluta and Compared to Bt, it played a more effective role in reducing the pest population.
 
 

Keywords

Main Subjects


  • Abbott WS. 1925. A method of computing effectiveness of an insecticide. Journal of  Econ Entomology. 18: 265-267.http://dx.doi.org/10.1093/jee/18.2.265a

    Abootorabi E. 2011. The control feasibility of Ectomyelois ceratoniae by Entomopathogenic nematode. National Pomegranate Symposium , Ferdowsi- Iran; 28-29.(In Persian with English Abstract). http://doi.org/10.22092/Bcpp.2019.119557

    Abootorabi E and Valizadeh A. 2012. of maize borer (Ostrinia nubilalis). The first National Congress of Monitoring and Forecasting in Plant Protection, Borujerd; Iran; 14-15. .(In Persian with English Abstract).http://doi.org/10.22092/Bcpp.2019.119557

    Abootorabi E. 2014. Report of native isolate pathogenicity of Steinernema feltiae on tomato leafminer, Tuta absoluta. Biocontrol in Plant Protection, 1:107-109. .(In Persian with English Abstract). http://doi.org/10.22092/Bcpp.2019.119557

    Alsaedi Gh, Ashuri A and Talebi Hassanloui R. 2017. Evaluation of Bacillus thuringiensis to Control Tuta absoluta under Laboratory Conditions. Agricultural Sciences. 8 (2): 591-599. http://doi.org/10.4236/as.2017.87045.

    Arthurs S, Heinz KM and Prasifka JR. 2004. An analysis of using entomopathogenic nematodes against above ground pest. Bulletin of Entomological Research, 94:207-306. http://doi.org/10.1079/ber 2003309.

    Baniameri V and Cheraghian A. 2011. The current status of Tuta absoluta in Iran and initial control strategies In: International symposium on management of Tuta absoluta (tomato borer) proceeding. Agadir, Morocco, November 16-18. https://doi.org/10.2478/jppr-2014-0046.

    Batalla- Carrera L, Morton A and Garcia- delpino F. 2010. Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. Biological Control. 55:523-530. http://doi.org/10.1007/s10526-010-9284-z

    Bayindir Erol A and Erdogan O. 2022. Insecticidal effects of some Bacillus thuringiensis commercial biopreparats on the larvae of the Tomato Leaf Miner, Tuta absoluta. Research Article. 6(4): 632-636.: https://doi.org/10.31015/jaefs.2022.4.17.

    Berbert-Molina MA, Prata AMR, Pessanha LG and Silveira MM. 2008. Kinetics of Bacillus thuringiensis var. israelensis growth on high glucose concentrations. Journal of industrial microbiology & biotechnology, 35(11), 1397-1404.‏https://doi.org/10.1007/s10295-008-0439-1

    Bloem S and Esther S. 2011. New pest response guidelines tomato leafminer (Tuta absoluta). USDA.

    Chailleux A, Bearez P, Pizzol J, Amiens-Desneux E, Ramirez-Romero R. and Desneux N. 2013. Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. Journal of pest science, 86(3):533-541.https://doi.org/10.1007/s10340-0130448-6.

    De Backer L, Haubruge E, Caparros Megido R and Verheggen F. 2014. Macrolophus pygmaeus as an efficient predator of the tomato leafminer Tuta absoluta in Europe. Biotechnology, Agronomy, Society and Environment. Vol (18): 536-543.http://doi.org/11006/163.

    Desneux N, Wajnberg E, Wyckhuys, KAG, Burgio G, Arpaia S, Narvaez-Vasquez CA, Gonzalez-Cabrera J, Ruescas DC, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T and Urbaneja A. 2010. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science, 83: 197-215.http://doi.org/10.1007/s10340-010-0321-6.

    Desneux N, Luna MG, Guillemaud T and Urbaneja A. 2011. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro- Eurasia and beyond: the new threat to tomato world production. Journal of Pest Science, 84: 403-408. http://doi.org/10.1007/s10340-011-0384-z.

    Dowds BCA and Peters A. 2002. Virulence mechanisms. Pp. 79-98 in R. Gaugler, ed. Entomopathogenic nematology. New York, NY: CABI.https://doi.org/10.1079/9780851995670.0079.

    El- Arnaouty, S. A., Pizzol, J., Galal, H. H., Kortam, M. N., Afifi, A. L., Beyssat, V., Desneux, N., Biondi, A & Heikal, I. H. 2014. Assessment of two Trichogramma species for control of Tuta absoluta in North African Tomato Greenhouses. African Entomology. Vol (22):801-809.http://doi.org/10.4001/003.022.0410.

    Eivazian Kary N, Niknam G, Griffin CT and Mohammadi SA. 2009. A survey of entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in the north-west of Iran. Nematology, 11 (1): 107-116. http://doi.org/10.1163/156854108X398453.

    Garcia-del-Pino F, Alabern X and Morton A. 2013. Efficacy of soil treatments of entomopathogenic nematodes against the larvae, pupa and adults of Tuta absoluta and their intraction with the insecticides used against this insect. Biological Control. 58: 723-731.http://doi.org/10.16970/ted.84972.

    Giustolin TA, Venderamim JD, Alves SB, Vieira SA and Pereira RM. 2001. Susceptibility of Tuta absoluta (Meyrick) (Lepidoptra: Gelechiidae) reared on two species of Lycopersicon to Bacillus thuringiensis var Kurstaki. Journal of Applied Entomology. 125: 551-556.https://doi.org/10.1046/j.1439-0418.2001.00579.x.

    Gonzalez- Cabrera J, Molla O, Moton H and Urbaneja A. 2011. Efficacy of Bacillus thuringiensis (Berliner) for controlling the tomato borer, of Tuta absoluta (Meyrick) (Lepidoptra: Gelechiidae). Biocontrol. 56: 71-80.

    https://doi.org/10.1007/s10526-010-9310-1.

    • Hallem EA, Dillman AR, Hong AV, ZhangY, Yano JM, DeMarco SF and Sternberg P W. 2011. A sensory code for host seeking in parasitic nematodes. Current Biology, 21: 377-383. https://doi.org/10.1016/j.cub.2011.01.048.

    Heierson A, Sidén I, Kivaisi A and Boman HG. 1986. Bacteriophage-resistant mutants of Bacillus thuringiensis with decreased virulence in pupae of Hyalophora cecropia. Journal of Bacteriology, 167(1), 18-24.‏

    https://doi.org/10.1128/jb.167.1.18-24.1986.

    Hunt DJ. 2007. Entomopathogenic Nematodes: Systematics, Phylogeny a Bacterial Symbionts, Nematology Monographs and Perspectives. Koninklijke Brill NV, Leiden 

    https://doi.org/10.1163/ej.9789004152939.i-816.2

    . Isman MB. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review Entomology. 51, 45-66.https://doi.org/ 10.1146/annurev.ento.51.110104.151146.

    Kamali S, Karimi J, Hosseini M, Campos-Herrera R and Duncan LW. 2013. Biocontrol potential of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsa on cucurbit fly, Dacus ciliates (Diptera: Tephritidae). Biocontrol Science and Technology, 23(11): 1307-1323. .(In Persian with English Abstract).https://doi.org/10.1080/09583157.2013.835790.

    Karimi J, Kharazi-Pakdel A, Yoshiga T, Koohi Habibi M and Hassani- Kakhki M. 2011. Characterization of Xenorhabdus (Y-Proteobacteria) strains associated bacteria with the Steinernema ( Nematode: Steinernematidae) isolates from Iran. Journal of Entomological Society of Iran, 31 (1): 57-69. .(In Persian with English Abstract).https://jesi.areeo.ac.ir/?lang=en.

    Kaya HK and Stock SP. 1997. Techniques in insect nematology. In: Lacey, L. A. (ed.), Manual of techniques in insect pathology. Academic press, London, Uk.

    Koppenhofer AM and Grewal PS. 2005. Nematodes as biocontrol agents.

    Mollá O, González-Cabrera J and Urbaneja A. 2011. The combined use of Bacillus thuringiensis and Nesidiocoris tenuis against the tomato borer Tuta absoluta. Biological Control. 56, 883-891

    .https://doi.org/10.1007/s10526-011-9353-y.

    Nikdel M, Niknam G, Griffin CT and Eivazian Kary N. 2010. Diversity of entomopathogenic nematodes (Nematoda: Steinernematidae, Heterorhabditidae) from Arasbaran forests and rangelands in north-west Iran. Nematology, 12: 767-773. https://doi.org/10.1163/138855410X12628646276168.

    Petras SF and Casida LE. 1985. Survival of Bacillus thuringiensis spores in soil. Applied and Environmental Microbiology, 50(6), 1496-1501.‏https://doi.org/10.1128/aem.50.6.1496-1501.1985.

    Reyes M, Rocha K, Alarco ´n L, Siegwart M and Sauphanor B. 2012. Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. Pesticide Biochemistry Physiology. 102:45-50.https://dx.doi.org/10.1016/j.pestbp.2011.10.008.

    Sharma MP, Sharma AN and Hussaini SS. 2011. Entomopathogenic nematodes, a potential microbial biopesticide: Mass production and commercialization status- a mini review. Archives of Phytopathology and Plant Production, 44: 855-870.http://dx.doi.org/10.1080/03235400903345315.

    Stock, S.P. & Goodrich- Blair, H. 2012. Nematode parasites, pathogens and associates of insects and invertebrates of economic importance. Pp. 373- 426. In: Lacey, L. A. (ed.), Manual of Techniques in Insect Pathology. 2nd ed. Academic Press, San Diego.

     https://doi.org/10.1016/B978-0-12-386899-2.00012-9

    Tanha Maafi Z, Ebrahimi N, Abootorabi E and Spiridonov S E. 2006. Record of two Steinernematid species from Iran. 17th Iranian Plant Protection Congress, 428p. .( In Persian)

    Urbaneja, A., Desneux, N., Gabarra, R., Arno, J., Gonzalez-Cabrera, J., Mafra Neto, A., Stoltman, L., Pinto, A. de S & Parra, J.R.P. 2013. Biology, ecology and management of the South American tomato pinworm, Tuta absoluta. Pp. 98-125. In: Pena, J.E. (ed), Potential Invasive Pests of Agricultural Crops. CAB International, Wallingford.https://doi.org/10.1079%2F9781845938291.0098

    Van Damme VM, KEG Beck B, Berckmoes E, Moerkens R, Wittemans L, De Vis R, Nuyttens D, Casteels HF, Maes M, Tirry L and De Clercq P. 2015. Efficacy of entomopathogenic nematodes against larvae of Tuta absoluta in the Laboratory. Pest manag Society of Chemical Industry (SCI). 8 P.https://doi.org/10.1002/ps.4195 Epub 2016 jan 4.

    White, G.F. 1927. A method for obtaining nematode infected larvae from cultures. Science 66: 302-303.

    https://doi.org/10.1126/science.66.1709.302-a.