تجزیه بای پلات و علیت صفات هیبریدهای مختلف ذرت در شرایط آبیاری عادی و تنش کمبود آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه به نژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه تبریز

2 گروه بهنژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 گروه بهنژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی ، دانشگاه تبریز، تبریز، ایران

چکیده

تجزیه رگرسیون چندگانه و تجزیه علیت عملکرد دانه ذرت با سایر صفات زراعی برای تعیین صفات موثر بر عملکرد دانه و نیز تجزیه اثر متقابل ژنوتیپ×صفت با استفاده از روش GGE بایپلات، برای ارزیابی واکنش هیبریدها در شرایط محیطی عادی و تنش کمبود آب بر اساس صفات مورد ارزیابی و تعیین هیبریدهای پرمحصول برای هر دو محیط انجام گرفت. 18 هیبرید ذرت به صورت آزمایش کرتهای خرد شده بر پایه طرح بلوکهای کامل تصادفی در سه تکرار و طی دو سال متوالی مورد ارزیابی قرار گرفتند. دو سطح آبیاری در کرتهای اصلی و هیبریدهای ذرت در کرتهای فرعی منظور شدند.در تجزیه علیت عملکرد دانه با سایر صفات مورد بررسی، تعداد ردیف در بلال، وزن 300 دانه و تعداد دانه در ردیف در شرایط عادی و تعداد ردیف در بلال و وزن 300 دانه در شرایط تنش کمبود دارای اثر مستقیم معنی دار روی عملکرد دانه بودند. نتایج حاصل از تجزیه GGE بایپلات ژنوتیپ×صفت در شرایط عادی و تنش کمبود آب نشان داد که در مجموع دو مولفه اول 72/28 درصد و در شرایط تنش کمبود آب، 83/60 درصد از واریانس کل داده ها را توجیه کردند. در هر دو شرایط عادی و تنش کمبود آب، هیبرید SC704 نیز به عنوان ژنوتیپ ایده آل شناخته شد.هیبرید SC704 در مرتبه اول به عنوان پرمحصولترین هیبرید در هر دو شرایط عادی و تنش کمبود آب و هیبرید SC647 در مرتبه بعدی قرار داشت. در عین حال انجام آزمایشهای بیشتر در مکانها و سالهای مختلف توصیه میشود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Path and Biplot analysis of agronomic traits of maize hybrids under normal irrigation and water-deficit stress conditions

نویسندگان [English]

  • Jamileh Seyedzavar 1
  • Majid Norouzi 2
  • Mohammad Moghaddam 2
  • Saeid Aharizad 3
1 Dept. of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz,Tabriz,, Iran
2 Department of Plant breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 Department of Plant breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]

Multiple regression analysis and path analysis of maize grain yield with other agronomic traits to determine the most effective traits of the grain yield as well as analysis of genotype×trait interaction using the GGE biplot method, to evaluate the response of the hybrids to normal and water-deficit stress conditions based on the measured traits for determining high-yielding hybrids for both conditions, were carried out. In order to determine superior hybrids under normal and drought stress conditions based on agronomic traits and with the help of genotype×trait biplot analysis and also to determine traits affecting grain yield through multiple regression and path analysis, 18 maize hybrids were evaluated in a split-plot design based on the randomized complete block design in three replications and in two consecutive years.Two levels of irrigation were allocated in the main plots and maize hybrids in the subplots.In the path analysis of the grain yield with other studied traits, the number of kernel rows, the 300-grain weight and the number of grains per row under normal conditions, and the number of kernel rows and the 300-grain weight in the drought stress conditions had significant direct effects on the grain yield.The results of GGE biplot analysis of genotype×trait in both conditions showed that in normal conditions the two first components explained 72/28% and in water-deficit stress conditions 83/60% of the total variance.In both conditions hybrid SC704 was recognized as the ideal genotype.Hybrid SC704 ranked first as the most high-yielding hybrid in both conditions, and hybrid SC647 ranked next.

کلیدواژه‌ها [English]

  • GGE biplot
  • Maize
  • Path analysis
  • Water deficit stress
  • Yield
Ahuja I, de Vos RCH, Bones AM and Hall RD. 2010. Plant molecular stress responses face climate change. Trends in Plant Science, 15(12): 664-674.
Boyer JS. 1982. Plant productivity and environment. Science, 218(4571): 443-448.
Boyer JS and Westgate ME. 2004. Grain yields with limited water. Journal of Experimental Botany, 55(407): 2385-2394.
Campos H, Cooper M, Habben JE, Edmeades GO and Schussler JR. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Research, 90(1): 19-34.
Dwyer LM, Ma BL, Evenson L and Hamilton RI. 1994. Maize physiological traits related to grain yield and harvest moisture in mid‐ to short‐season environments. Crop Science, 34(4): 985-992.
Edmeades, GO. 2008. Drought tolerance in maize: an emerging reality. The International Service for the Acquisition of Agri-Biotech Applications (ISAAA). www.isaaa.org.
Ingram, J. 2011. A food systems approach to researching food security and its interactions with global environmental change. Food Security, 3: 417-431.
Jafarzadeh AA, Kassray R and Neyshabouri MR. 1997. Detailed studies of 18 hectares of lands and soils of Karakaj research station. Journal of Agricultural Science, 7: 187-213 (In Persian).
Laskari M, Menexes G, Kalfas I, Gatzolis I and Dordas C. 2022. Water Stress Effects on the Morphological, Physiological Characteristics of Maize (Zea mays L.), and on Environmental Cost. Agronomy, 12(10): 2386.
Oguz MC, Aycan M, Oguz E, Poyraz I and Yildiz M. 2022. Drought Stress Tolerance in Plants: Interplay of Molecular, Biochemical and Physiological Responses in Important Development Stages. Physiologia, 2(4): 180-197.
Mohamed NEM, Said AA and Amein KA. 2013. Additive main effects and multiplicative interaction (AMMI) and GGE-biplot analysis of genotype environment interactions for grain yield in bread wheat (Triticum aestivum L.). African Journal of Agricultural Research, 8(42): 5197-5203.
Payne, RW. 2009. GenStat. Wiley Interdisciplinary Reviews: Computational Statistics, 1(2): 255-258.
Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B, Song Y., Wang T and Li Y. 2011. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theoretical and Applied Genetics, 122(7): 1305-1320.
Prasanna, BM. 2012. Diversity in global maize germplasm: characterization and utilization. Journal of Biosciences, 37(5): 843-855.
Rafiq CM, Rafique M, Hussain A and Altaf M. 2010. Studies on heritability, correlation and path analysis in maize (Zea mays L.). Journal of Agricultural Research, 48(1): 35-38.
Samonte SOP, Tabien RE and Wilson LT. Parental selection in rice cultivar improvement. Rice Science, 20(1): 45-51.
Sheoran, S, Kaur Y, Kumar S, Shukla S, Rakshit S and Kumar R. 2022. Recent advances for drought stress tolerance in maize (Zea mays L.): Present status and future prospects. Frontiers in Plant Science, 1580.
Shiva S and Jagannath MK. 1991. Relationships of the growth and yield components with grain yield of maize through path analysis. Journal of Agricultural Research, 2: 223-225.
Singh G and Singh M. 1993. Correlation and path analysis in maize under mid-hills of Sikkim. Crop Improvement (India). 20(2): 222-225.
Yan W. 2002. Singular‐value partitioning in biplot analysis of multienvironment trial data. Agronomy Journal, 94(5): 990-996.
Yan W, Hunt LA, Sheng Q and Szlavnics Z. 2000. Cultivar evaluation and mega‐environment investigation based on the GGE biplot. Crop Science, 40(3): 597-605.
Yan, W and Kang MS. 2002. GGE Biplot Analysis: A Gaphical Tool for Breeders, Geneticists, and Agronomists.(CRC Press.
Yan W and Rajcan I. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop science, 42(1): 11-20.
Yang S, Vanderbeld B, Wan J and Huang Y. 2010. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Molecular Plant, 3(3): 469-490.