اثرات قطع آبیاری در دو مرحله مهم رشد بر خصوصیات زراعی گندم نان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی،

2 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی،

3 ایستگاه تحقیقات کشاورزی اسلام آّبادغرب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج

10.22034/saps.2023.55342.2995

چکیده

چکیده
اهداف: این تحقیق با هدف بررسی عملکرد دانه شش رقم گندم نان در شرایط قطع آبیاری در دو مرحله مهم رشدی و نیز مشخص کردن دامنه تأثیر مراحل مختلف آبیاری بر عملکرد دانه، انجام شد.
 
مواد و روش‎ها: آزمایش در قالب طرح بلوک‎های کامل تصادفی در سه تکرار و در چهار شرایط مجزا (چهار رژیم متفاوت آبیاری) در دو سال زراعی اجرا گردید. در هر یک از مراحل اعمال تنش، برای جلوگیری از ورود آب باران به پلات‎ها، از Rain Shelter استفاده گردید.
 
یافته‏ها: نتایج تجزیه واریانس مرکب صفات در همه محیط‏ها نشان داد ارقام و سایتها (شرایط آبیاری) از نظر همه صفات اختلاف بسیار معنی­داری با یکدیگر دارند. ارقام میهن و سیروان با 8321 و 7722 کیلوگرم در هکتار به‎ترتیب بیشترین و کمترین عملکرد دانه را دارا بودند. میانگین کاهش عملکرد دانه ارقام تحت شرایط تنش خشکی در مرحله طویل شدن ساقه، تنش آخر فصل و تنش آخر فصل منضم به یک مرحله آبیاری در موعد شیری پرشدن دانه به‎ترتیب برابر 27/20، 94/27 و 39/14 درصد نسبت به شرایط نرمال بود. اثر محیط بر تغییرات صفات، دو برابر اثر ژنوتیپ و هفت برابر اثر ژنوتیپ × محیط بود. ارقام رخشان و حیدری با 215 و 223 روز، به‏ترتیب به‎عنوان ارقام زودرس و دیررس شناسایی شدند.
 
نتیجه‎گیری: نتایج حاصله، دانش ما را در خصوص پیشرفت فنولوژیکی این شش رقم گندم بهبود بخشید که می‎تواند سبب بهبود حفظ آب در دسترس از طریق انجام آبیاری بر اساس مراحل حساس فنولوژیکی و نیز سهم آن‏ها در عملکرد نهایی گردد. GGE بای‏پلات، در تمایز ژنوتیپ‏ها در محیط‏های گوناگون، کاراتر از تجزیه واریانس بود. رقم میهن به دلیل ویژگی‎های بالقوه بالا، برای بکارگیری در برنامه‎های اصلاحی آتی در شرایط تنش خشکی توصیه می‎شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Water Cut Effects at Two Important Growth Stages on Agronomic Traits of Bread Wheat

نویسندگان [English]

  • Shahryar Sasani 1
  • Reza Amiri 2
  • Rasoul Jalilian 3
1 Crop and Horticultural Sciences Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
2 Crop and Horticultural Sciences Research Department, Lorestan Agricultural and Natural Resources Research and Education Center, AREEO, Khorramabad, Iran
3 Eslamabad-e-Gharb Agricultural Research Station, Kermanshah Agricultural and Natural Resources Research and Education Centre, AREEO, Kermanshah, Iran
چکیده [English]

Abstract
Background and Objective: This research was conducted to investigate the kernel yield of six bread wheat cultivars under irrigation cut conditions at two important stages of development and to determine the scope of different irrigation stages on grain yield.
 
Materials and Methods: The experiment was conducted as randomized complete blocks design with three replicates under four different conditions (four irrigation regims) across two cropping years. Portable rainout shelters were installed to protect the crop from rainfall during drought stress treatments.
 
Results: Combined analysis of variance across all environments indicated high significant genotypic and environmental differences for all the traits. Cultivars “Mihan” and “Sirwan” with 8321 and 7722 kg/ha had the highest and lowest kernel yield, respectively. The reduction of kernel yield was 20.27, 27.94 and 14.39% under stem elongation drought stress, terminal drought stress and terminal drought stress irrigated at milk development stage, respectively compared to normal irrigation conditions. The influence of environment on variation of the traits was twice as large as genotype and seven times as large as genotype by environment interaction. Rakhshan and Heydari cultivars were identified as early and late cultivars with 215 and 223 days, respectively.
 
Conclusion: Current research has improved our knowledge of these six latest popular wheat phenological developments, which can improve water conservation through an efficient irrigation approach based on the sensitivity of the phenological growth stage and their contribution toward final yield. GGE biplot was shown to be more informative than analysis of variance for distinguishing response of cultivars in different environments. The cultivar “Mihan” for incorporating its high potential traits is recommended for future breeding programs under drought stress conditions.
 

کلیدواژه‌ها [English]

  • Bread Wheat
  • Developmental Stages
  • Drought Stress
  • GYT Biplot
  • Kernel Yield
Ahmadi V and Aharizad S.  2014. Evaluation of bread wheat recombinant inbred lines for water deficit stress tolerance indices. Journal of Agricultural Science and Sustainable Production. 23(4): 9-22. (In Persian).
Alghabari F, Lukac M, Jones H and Gooding M. 2014. Effect of Rht alleles on the tolerance of wheat grain set to high temperature and drought stress during booting and anthesis. Journal of Agronomy and Crop Science, 200: 36-45. https://doi.org/10.1111/jac.12038.
Amiri R, Bahraminejad S and Cheghamirza K. 2018. Estimating genetic variation and genetic parameters for grain iron, zinc and protein concentrations in bread wheat genotypes grown in Iran. Journal of Cereal Science, 80: 16-23. https://doi.org/10.1016/j.jcs.2018.01.009.
Blum A. 2010. Plant Breeding for Water-Limited Environments. Springer, London. pp. 1-210. https://doi.org/10.1007/978-1-4419-7491-4
Farooq M, Hussain M and Siddique KHM. 2014. Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33: 331-349. https://doi.org/10.1080/07352689.2014.875291.
Foroozanfar M, Bihamta M, Peyghambary A and Zeynali H. 2011. Evaluation of bread wheat genotypes under normal and water stress conditions for agronomic traits. Journal of Agricultural Science and Sustainable Production, 21(3):  33-46. (In Persian).
Gouache D, Le Bris X, Bogard M, Deudon O, Page C and Gate P. 2012. Evaluating agronomic adaptation options to increasing heat stress under climate change during wheat grain filling in France. European Journal of Agronomy, 39: 62-70. https://doi.org/10.1016/j.eja.2012.01.009.
Ihsan MZ, El-Nakhlawy FS, Ismail SM, Fahad S and Daur I. 2016. Wheat phenological development and growth studies as affected by drought and late season high temperature stress under arid environment. Frontiers in Plant Science, 7: 1-14. https://doi.org/10.3389/fpls.2016.00795.
Joudi M, Ahmadi A, Mohammadi V, Abbasi A and Mohammadi H. 2014. Genetic changes in agronomic and phenologic traits of Iranian wheat cultivars grown in different environmental conditions. Euphytica, 196: 237-249. https://doi.org/10.1007/s10681-013-1027-7
Khakwani AA, Dennett MD, Munir M and Abid M. 2012. Growth and yield response of wheat varieties to water stress at booting and anthesis stages of development. Pakistan Journal of Botany, 44: 879-886.
Kilic H and Yağbasanlar T. 2010. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum) cultivars. Notulae Botanicae Horti Agrobotanici, 38: 164-170. https://doi.org/10.15835/nbha3814274.
Koutis K, Mavromatis AG, Baxevanos D and Koutsika-Sotiriou M. 2012. Multi environmental evaluation of wheat landraces by GGE biplot analysis for organic breeding. Agricultural Science, 3: 66-74. https://doi.org/10.4236/as.2012.31009.
 
Madani A, Rad AS, Pazoki A, Nourmohammadi G and Zarghami R. 2010. Wheat (Triticum estivum L.) grain filling and dry matter partitioning responses to source: sink modifications under postanthesis water and nitrogen deficiency. Acta Scientiarum Agronomy, 32: 145-151.
Mohammadi R. 2018. Breeding for increased drought tolerance in wheat: a review. Crop and Pasture Science, 69: 223-241. https://doi.org/10.1071/CP17387.
Mohammadi R, Haghparast R, Amri A and Ceccarelli S. 2010. Yield stability of rainfed durum wheat and GGE biplot analysis of multi-environment trials. Crop and Pasture Science, 61: 92-101. https://doi.org/10.1071/CP09151.
Patil RM, Tamhankar SA, Oak MD, Raut AL, Honrao BK, Rao VS and Misra SC. 2013. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica, 190(1): 117-129. https://doi.org/10.1007/s10681-012-0785-y.
Rasheed A, Xia X, Ogbonnaya F, Mahmood T, Zhang Z, Mujeeb-Kazi A and He Z. 2014. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biology, 14: 128. https://doi.org/10.1186/1471-2229-14-128
Sarto MVM, Sarto JRW, Rampim L, Rosset JS, Bassegio D, Da Costa PF and Inagaki AM. 2017. Wheat phenology and yield under drought: A review. Australian Journal of Crop Science, 11(8): 941-946. https://doi.org/10.21475/ajcs.17.11.08.pne351.
Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, DE Groot S, Soole K and Langridge P. 2017. Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Frontiers in Plant Science, 8: 1-8. https://doi.org/10.3389/fpls.2017.01950.
Shi J-F, Mao X-G, Jing R-L, Pang X-B, Wang Y-G and Chang X-P. 2010. Gene expression profiles of response to water stress at the jointing stage in wheat. Agricultural Sciences in China, 9(3): 325-330. https://doi.org/10.1016/S1671-2927(09)60100-0.
Stacks WJ, Deryng D, Foley JA and Navin R. 2010. Crop planting dates: an analysis of global patterns. Global Ecology and Biogeography, 19: 607-620. https://doi.org/10.1111/j.1466-8238.2010.00551.x.
Tabassum T, Farooq M, Ahmad R, Zohaib A, Wahid A and Shahid M. 2018. Terminal drought and seed priming improves drought tolerance in wheat. Physiology and Molecular Biology of Plants, 24(5): 845-856. https://doi.org/10.1007/s12298-018-0547-y.
 
Van Bussel LGJ, Ewert F and Leffelaar PA. 2011. Effects of data aggregation on simulations of crop phenology. Agriculture, Ecosystems & Environment, 142: 75-84.
Venkateswarlu B and Shanker AK. 2012. Dryland agriculture: bringing resilience to crop production under changing climate. In: Venkateswarlu B, Shanker AK, Shanker C and Maheswari M. (Eds), Crop Stress and its Management: Perspectives and Strategies, (Dordrecht: Springer), 19-44. https://doi.org/10.1007/978-94-007-2220-0_2
Villegas D, Alfaro C, Ammar K, Catedra MM, Crossa J, Garcia Del Moral LF and Royo C. 2016. Daylength, temperature and solar radiation effects on the phenology and yield formation of spring durum wheat. Journal of Agronomy and Crop Science, 202: 203-216. https://doi.org/10.1111/jac.12146.
White JW, Kimball BA, Wall GW,  Ottman MJ and Hunt LA. 2011. Responses of time of anthesis and maturity to sowing dates and infrared warming in spring wheat. Field Crops Research, 124: 213-222. https://doi.org/10.1016/j.fcr.2011.06.020.
Whitechurch EM, Slafer GA and Miralles DJ. 2007. Variability in the duration of stem elongation in wheat and barley genotypes. Journal of Agronomy and Crop Science, 193: 138-145.
Yan W. 2001. GGEbiplot–a windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal, 93: 1111-1118.
Yan W and Frégeau-Reid J. 2018. Genotype by yield×trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Scientific Reports, 8: 8242.
Yan W, Kang M, Ma B, Woods S and Cornelius P. 2007. GGE biplot vs AMMI analysis of genotype-by-environment data. Crop Science, 47: 643-655. https://doi.org/10.2135/cropsci2006.06.0374.
Zadoks JC, Chang TT and Konzak CF. 1974. A decimal code for the growth stages of cereals. Weed Research, 14: 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x.
Zhang X, Wang S, Sun H, Chen S, Shao L and Liu X. 2013. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: a case study in the North China Plain. European Journal of Agronomy, 50: 52-59. https://doi.org/10.1016/j.eja.2013.05.005.