Effect of Different Growing Organic Substrates on Growth and Yield Components of Pinto Bean (Phaseolus vulgaris L.) under Heavy Metals Stress

Document Type : Research Paper

Authors

Abstract

Heavy metals are the most important pollutants in the environment. One approach to reduce the accumulation of heavy metals in plants is usage of different growing substrates. In order to investigate of heavy metals effect on growth and yield components of pinto bean (cv. Sadri), a greenhouse experiment was conducted as a factorial based on completely randomized design with three replications in Yasouj university, in 2013. The first factor included of five levels of heavy metals (control without heavy metals, Cd(NO3)2, Pb(NO3)2, Ni(NO3)2 and CuSO4) and the second factor included of four levels of different growing substrates (compost, vermicompost, Populus sawdust and non-application of organic compounds). The results showed that the addition of vermicompost respectively increased plant height and root length in conditions of without heavy metals 53, 88%, nickel nitrate 61, 35%, lead nitrate 63, 17%  and copper sulfate 25, 85% compared to non-application of organic compounds. Vermicompost application also increased 87% the number of pods per plant and seed per pod in cadmium nitrate stress. On the other side, use of vermicompost, compost and Populus sawdust could not limit the adverse effects of heavy metals on seed weight per plant. Vermicompost increased hundred grain weights (11%) and protein content of bean (9%) compared to non-organic material conditions. In general, the results of this study showed that application of vermicompost on soil contaminated with heavy metals, to some extent, can improve undesirable effects of heavy metals stress.
 

Keywords


امامی ع، 1375. روش‌های تجزیه گیاه. نشریه سازمان تحقیقات، آموزش و ترویج کشاورزی، 1 (982): 126.
پوراکبر ل و ابراهیم‌زاده ن، 1392. اثر نیکل و مس بر بیومس، محتوای رنگیزه‌ای و آنزیم‌های آنتی‌اکسیدانت در ریشه‌ها و اندام‌های هوایی گیاه ذرت. نشریه علوم دانشگاه خوارزمی، 13 (1): 712-701.
تدین م و قربانی‌نژاد ع ج، 1391. اثر آبیاری محدود و مقادیر کمپوست بر خصوصیات مورفولوژیک و عملکرد دو رقم زراعی نخود (Cicer arietinum). نشریه پژوهش‌های حبوبات ایران، 3 (2): 44-31.
خشنود ا، رفیعی م، خورگامی ع و پزشک‌پور پ، 1391. بررسی تأثیر کاربرد کود ازته و کود زیستی ورمی‌کمپوست در کشت پاییزه عدس. نشریه کشاورزی و دامپروری برزگر، 107: 47-45.
کافی م، برزویی ا، صالحی م، معصومی ع و نباتی ج، 1388. فیزیولوژی تنش‌های محیطی در گیاهان. انتشارات جهاد دانشگاهی مشهد.
نورانی‌آزاد ح و کفیل‌زاده ف، 1390. تأثیر سمیت کادمیوم بر رشد، قندهای محلول، رنگیزه‌های فتوسنتزی و برخی آنزیم‌ها در گلرنگ. مجله زیست‌شناسی ایران، 24 (6): 867-858.
اله‌دادی ا، معماری ع، اکبری ع، لطفی‌فر ا و شمس ع، 1392. تأثیرکاربرد مقادیر متفاوت کمپوست زباله شهری بر رشد و عملکرد گیاه زراعی ماش. مجله پژوهش‌های تولید گیاهی، 20 (2):160-145.
Angelova V, Ivanova R, Pevicharova G and Ivanov K, 2010. Effect of organic amendments on heavy metals uptake by potato plants. World Congress of Soil Science, Soil Solutions for a Changing World, 1-6 August,  Brisbane, Australia, 84-87.
Arancon N, Edwards QCA, Bierman P, Welch C and Metzger JD, 2004. Influences of vermicomposts on field strawberries: Effects on growth and yields. Bioresource Technology, 93: 145-153.
Atiyeh RM, Arancon N, Edwardsand CA, Metzger JD, 2002. The influence of humic acids derived from earthworm processed organic wastes on plant growth. Bioresourc Technology, 84: 7-14.
Bartal A, Yermiyahu U, Beraud J, Keinan M, Rosenberg R, Zohar, Rosen DV and Fine P, 2004. Nitrogen, phosphorus, and potassium uptake by wheat and their distribution in soil following successive, annual compost applications. Environmental Quality, 33: 1855-1865.
Carrasquero Duran A, Flores I, Perozo C and Pernalete Z, 2006. Immubilization of lead by a vermicompost and its effect on white bean (Vigna sinenis var. Apure) uptake. Environmentally Sciences Technology, 3: 203-212.
Cavender ND, Atiye RM and Knee M, 2003. Vermicompost stimulates mycorrhizal colonization of roots of Sorghum bicolor at the expense of plant growth. Pedobiologia, 47: 85-89.
Countrey N, 2006. Influence of cadmium on growth of root vegetable and accumulation of cadmium in the edible root. International Journal Applied Science and Engineering, 3: 243-252.
Courtney RG and Mullen GJ, 2008. Soil quality and barley growth as influenced by the land application of two compost types. Bioresource Technology,99: 2913–2918.
Das PK, Sarangi D, Jena MK and Mohanty S, 2002. Response of greengram (Vigna radiata L.) to integrated application of vermicompost and chemical fertilizer in acid lateritic soil. Indian Agriculture, 46 (1): 79-87.
Faiazan S, Kausar S and Perveen R, 2011. Varietal differences for cadmium-induced seedling mortality, foliar toxicity symptoms, plant growth, proline and nitrate reductase activity in chickpea (Cicer arietinum L.). Biology and Medicine, 3: 196-206.
Gajewska E and Skłodowska M, 2010. Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicology and Environmental Safety, 73: 996-1003.
Han DH and Lee JH, 1996. Effects of liming on uptake of lead and cadmium by Raphanus sativa. Archives of Environmental Contamination and Toxicology, 31: 488-493.
Hanc AP, Tlustos J and Szakova J, 2009. Changes in cadmium mobility during composting and after soil application. Waste Management, 29: 2282–2288.
Howladar SM, 2014. A novel moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseoulus vulgaris L.) plants. Ecotoxicology and Environmental Safety, 100: 69-75.
Irfan M, Hayat Sh, Ahmad A and Alyemeni MN, 2013. Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 20: 1-10.
Jadia CD, Fulekar MH, 2008. Phytoremediation: The application of vermin-compost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Journal of Environmental Engineering and Management, 7(5): 547-558.
Kabir M, Zafar Iqbal M, Shafiq M and Farooqi ZR, 2008. Reduction in germination and seedlikg growth of Thespesia populnea L. caused by lead and cadmium treatments. Pakistanian Botany, 40: 2419-2426.
Kopittke PM and Menzies NW, 2006. Effect of Cu toxicity on growth of cowpea (Vigna unguiculata). Plant and Soil, 279: 287-296.
Molassiotis A, Satipoulos T, Tanou G, Diamantidis G and Therios I, 2006. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of apple rootstock EM9 (Malus domestica Borkh). Environmental and Experimental Botany, 56(1): 54-62.
Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N and Chung JW, 2011. Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. Hazardous Materials, 185: 549–574.
Sahni S, Sarma BK and SinghSingh KP, 2008. Vermicompost enhances performance of plant growth promoting rhizobacteria in Cicer arietium rhizosphere against Sclerotium rolfsii. Crop Protection, 27: 369–379.
Soumare MF, Tack MG and Verloo MG, 2003. Effect of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of Mali. Bioresource Technology, 86: 15-20.
Yadav SK, 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metals stress tolerance of plants. South African Journal of Botany, 76: 167-179.
Zengin FK and Munzuroglu O, 2005. Effects of some heavy metaleson chlorophyll, proline and som antioxidant and chemicals in Bean (Phaseolus vulgaris L) seedlings. Acta Biologica Cracoviensla Series Botanica, 47(2): 157–164.