Determining the Optimal Crop Pattern with Emphasis on Budget Constraints: De-Novo Programming Evaluation in Zarghan P lain of Fars

Document Type : Research Paper

Authors

Abstract

 Optimization of production plan is one of the main problems of decision makers. De-Novo programming is a method that determines the optimal solution with given budget constraints. Using a combination of multi objective programming and De-Novo programming can establish a model for cost minimization and obtaining optimal solution. In this study, De-Novo programming has been used to design and create optimal agricultural crop pattern in Zarghan plain of Fars. Results showed that before constructing a production unit, using input costs and their quantity in similar farms, optimal planning has been found for budget minimization. Also because second De-Novo programming separate costs has a better solution.

Keywords


الوانچی م و صبوحی م، 1388. کاربرد تصمیم گیری چند معیاره تعاملی در برنامه ریزی زراعی مطالعه موردی: استان فارس. مجله علوم و فنون کشاورزی و منابع طبیعی. 13(47):801-787.
 
هزینه تولید محصولات کشاورزی سال زراعی 86-1385، 1388. وزارت جهاد کشاورزی. معاونت امور برنامه ریزی، اقتصادی و بین المللی دفتر آمار و فناوری اطلاعات.
 Babić Z, 2005. Production planning via de novo programming, Global Business & Economics Anthology, Worcester, USA,  pp. 476-484..
Babić Z, and Pavić I. 1996. Multi-criteria production programming by de novo programming approach, International Journal of Production Economics, 43(1), pp. 59-66.
Chen Y. and Hsieh H, 2006. Fuzzy multi-stage de-novo programming problem. Applied Mathematics and Computation (181)  1139–1147
Fiala, P. 2011. Multi objective De novo linear programming. Mathematica, 50(2), 29-36.
Li R.J. and Lee E.S, 1990. Fuzzy approaches to multi-criteria de novo programs. Journal of Mathematical Analysis and Applications. 153 (1),  pp. 13-20
Shi Y, 1995. Studies on optimum path ratios in multi-criteria de novo programming problems, Computers Math. Applic. 29(5), pp.43-50.
Zeleny M, 1986. Optimal system design with multiple criteria: de novo programming approach. Engineering Costs and Production Economics, (10): 89-94.
Zeleny M, 2005. The evolution of optimality: de novo programming. C.A. Coello Coello et al. (Eds.): EMO 2005, LNCS 3410, pp. 1-13.
Zhang Y. M, Huang G. H., and Zhang, X. D, 2009. Inexact de Novo programming for water resources systems planning. European Journal of Operational Research 199, pp 531–541.