Effects of Nitrogen Rates on Critical Period of Natural Weed Interference on Barley Yield (Hordeum vulgare L. var. Makoei)

Document Type : Research Paper

Authors

Abstract

Effects of nitrogen rates on critical period of natural weed interference and yield of barley (Hordeum vulgare L.) were studied during 2006 and 2007 at the Agricultural Research Station, University of Tabriz, Iran. The experiment was carried out as split-plot, based on randomized complete block design with three replications. Nitrogen levels (0, 40, 60 and 120 kg/ha) were allocated to the main plots and 10 natural weed interference periods (two sets) were assigned to subplots. In the first set, the plots were kept weed-free up to Em (Emergence - 1st leaf emerged), El5 (5th leaf unfolded), Ti (Tillering - Main shoot and 3 tillers), Se (Stem elongation - 5th node detectable) and Ea em (Ear emergence - Emergence of head complete) growth stages (GS), corresponding to 10, 15, 23, 35 and 59 Zadok’s scales, respectively, by hand weeding. In the second set, plots were left weed infested up to the corresponding periods and subsequently kept weed free. Weed density was 161 plants per square meter in the control plots. Results showed that grain yield decreased with increasing weed interfrence duration. Full-season weed infestation decreased barley grain yield 42.51% as compared with the control. The constructed models indicated that in order to prevent a 5% grain yield loss, weeds at 0, 40, 80 and 120kg N/ha must be removed from the fields after 20.5, 29.6, 31.9 and 30.5 days from emergence (DAE), respectively. Barley required 130.5, 106.7, 105.2 and 109.8 days weed free period to prevent a 5% grain yield loss under given nitrogen rates, respectively. An increase in the nitrogen levels enhanced barley tolerance to weed infestation. The growth and grain yield of barley were also increased by nitrogen application in the sustainable level, however, weed dry weight was not affected. The absence or more reductions in nitrogen use may warrant more intensive weed management. Furthermore, more reductions in the nitrogen level before barley planting may cause the need for more immediate and long period weed control.        

Keywords


امام ی، 1383. زراعت غلات. انتشارات دانشگاه شیراز.
بی­نام، 1386. آمار نامه کشاورزی (سال زراعی 85-84). وزارت جهاد کشاورزی، دفتر معاونت برنامه ریزی و اقتصاد و دفتر آمار و فناوری اطلاعات.
جعفرزاده ع ا، 1377. مطالعات تفصیلی 26 هکتار از اراضی و خاک های ایستگاه تحقیقاتی  دانشکده کشاورزی دانشگاه تبریز. نشریه دانشکده علوم انسانی و اجتماعی، شماره 2، صفحه­های 16 تا 29.
شفق کلوانق ج، 1387. اثرات اکوفیزیولوژیک مقادیر مختلف نیتروژن بر روی دوره بحرانی تداخل علف های هرز و عملکرد کمی و کیفی سویا. رساله دکترای رشته زراعت، دانشکده کشاورزی دانشگاه تبریز.
مظاهری د، 1377. زراعت مخلوط. انتشارات دانشگاه تهران.
Evans SP, Knezevic SZ, Lindquist JL, Shapiro CA and Blankenship EE, 2003a. Nitrogen application influences the critical period for weed control in corn. Weed Sci 51: 408-417.
Evans SP, Knezevic SZ, Lindquist JL and ShapiroCA, 2003b. Influence of nitrogen and duration of weed interference on corn growth and development. Weed Sci 51: 546-556.
Hall MR, Swanton CJ and Anderson GW, 1992. The critical period of weed control in grain corn (Zea mays). Weed Sci 40: 441-447.
Hamzei J, Dabbagh Mohammady Nasab A, Rahimzadeh Khoie F, Javanshir A and Moghaddam M, 2007. Critical period of weed control in three winter oilseed rape ( Brassica napus L.) cultivars. Turk J Agric For 31: 83-90.
Knezevic SZ, Evans SP, Blankenship EE, Van Acker RC  and Lindquist JL, 2002. Critical period for weed control: the concept and data analysis. Weed Sci 50:773-786.
Knezevic SZ, Evans SP and Mainz M, 2003. Row spacing influence the critical timing for weed removal in soybean ( Glycine max). Weed Tech 17: 666-673.
Kuchinda NC, Ndahi WB, Lagoke STO and Ahmed MK, 2001. The effects of nitrogen and period of weed interference on the fibre yield of kenaf (Hibiscus canabinus) in the northern Guinea Savanna of Nigeria. Crop Protection 20: 229-235.
Martin SG, Van Acker RC and Friesen LF, 2001. Critical period of weed control in spring canola. Weed Sci  49: 326-333.
Mohammadi G, Javanshir A, Khooie FR, Mohammadi SA and Zehtab-Salmasi, S, 2005. Critical period of weed interference in ckickpea. European Weed Research 45(1): 57-63.
MSTAT-C. 1993. MSTAT-C, a microcomputer statistical program for the design, arrangement and analysis of agronomic research experiments. MichiganStateUniversity.
Puricelli ED, Delma EF, Gustavo AO and Mario RS, 2003. Spurred anoda (Anoda cristata) competition in narrow-and wide-row soybean (Glycine max).Weed Tech  17: 446-451.
Ratkowsky DA, 1990. Handbook of nonlinear regression models. Marcel Dekker Inc., New York.
Santos BM, Dusky JA, Stall WM and Shilling DG, 1997. Influence of smooth pigweed (Amaranthus hybridus) and common purslane (Portulaca oleracea) densities on lettuce yield under different phosphorus fertility regimes. Hort Sci 32: 431.
Shafagh-Kolvanagh J, Zehtab-Salmasi S, Javanshir A, Moghaddam M, Dabbagh Mohammadi Nasab A, 2008. Effects of nitrogen and duration of weed interference on grain yield and SPAD (chlorophyll) value of soybean (Glycine max (L.) Merrill.).  Journal of Food, Agriculture & Environment  6 (3&4): 368-373.
Singh M, Saxena MC, Abu-Irmaileh BE, Al-Thahbi SA, and Haddad NI, 1996. Estimation of critical period of weed control. Weed Sci 44: 273-283.
Van Acker RC, Weise SF and Swanton CJ, 1993. The critical period of weed control in soybean (Glycin max (L.) Merrill.). Weed Sci 41: 194-200.