Document Type : Research Paper
Authors
1 Department of Horticulture, Faculty of Agriculture, University of Tabriz
2 1- PhD student, Department of Horticulture, Tabriz University, Tabriz, Iran
3 Department of Horticulture, Faculty of Agriculture, University of Tabriz, Iran
Abstract
Keywords
Main Subjects
Ainsworth E and A Rogers. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant cell & environment, 30(3):258-270. oi.org/10.1111/j.1365-3040.2007.01641. x.
Al Jaouni S, Saleh A, Wadaan M, Hozzein W, Selim S and Abdelgavad H. 2018. Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity. Journal of plant physiology, 224: 121-131. doi: 10.1016/j.jplph.2018.03.016.
Amaki W and Kunii M. 2015. Effects of light quality on the flowering responses in Kalanchoe blossfeldiana. Acta Horticuturae, 1107: 279-284. doi.org/10.17660/ActaHortic.2015.1107.38
Barickman T, Adhikari B, Sehgal A, Walne C, Reddy K, and Gao W. 2021. Drought and Elevated CarbonDioxide Impact the Morphophysiological Profile of Basil (Ocimum basilicum L.). Crops, 1(3): 118-128. doi.org/10.3390/crops1030012.
Baslam M, Morales F, Garmendia I and Goicoechea N. 2013. Nutritional quality of outer and inner leaves of
green and red pigmented lettuces (Lactuca sativa L.) consumed as salads. Scientia Horticulturae, 151: 103–111 doi10.1016/j.scienta.2012.12.023.
Bazzaz F. 1990. The Response of Natural Ecosystems to the Rising Global CO2 Levels. Annual Review of Ecology and Systematics. Annual Reviews, 21: 167-196. doi: 10.1146/annurev.es.21.110190.001123.
Bremner J. 1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of AgriculturalScience, 55(1): 11-33.doi: 10.1017/S0021859600021572.
Brown A, Slabas A and Rafferty J. 2010. Fatty acid biosynthesis in plants metabolic pathways, structure and organization. Lipids Photosynth, 30: 11–34. doi: 10.1007/978-90-481-2863-1_2.
Bunce J.2004. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Journal of American Society for Horticultural Science.140:1–10.doi: 10.21273/JASHS.115.3.364.
Desjardins Y, Gosselin A and Lamnarre M. 1990. Growth of transplants and in vitro-cultured clones of
asparagus in response to CO2 enrichment and supplemental lighting. Journal of American Society for Horticultural Science.115:364- 368. doi: 10.21273/JASHS.115.3.364.
Dong J, Gruda N, Lam S, Li X and Duan Z. 2018. Effects of elevated CO2 on nutritional quality of vegetables: a review. Frontiers in plant science, 9: 924. doi.10.3389/fpls.2018.00924.
Dou H, Niu G, Gu M, and Masabni J. (2018). Responses of Sweet Basil to Different Daily Light Integrals in Photosynthesis, Morphology, Yield, and Nutritional Quality. HortScience, 53(4), 496-503. Retrieved May 1, 2024, from https://doi.org/10.21273/HORTSCI12785-17.
Fierro A, Gosselin A and Tremblay N. 1994. Supplemental Carbon Dioxide and Light Improved Tomato and Pepper Seedling Growth and Yield." HortScience, 29(3): 152-154. doi:10.21273/HORTSCI.29.3.152.
Fraszczak B, Golcz Zawirska A, Wojtasiak R and Janowska B. 2014. Growth rate of sweet basil and lemon
balm plants grown under fluorescent lamps and LED modules. Acta Scientiarum Polonorum Hortorum Cultus, 13: 3– 13.
Gillig S, Heinemann R, Hurd G, Pittore K and Powell D. 2008. Response of basil (Ocimum basilicum) to
increased CO2 levels. E&ES359 Global Climate Change, Johan Varekamp; Wesleyan University:
Middletown, CT, USA. http://dx.doi.org/10.3390/metabo13010085.
Hao X and Athanasios P. 1999. Effects of supplemental lighting and cover materials on growth,
photosynthesis, biomass partitioning, early yield and quality of greenhouse cucumber. Scientia
Horticulturae, 80(1-2): 1-18. http://dx.doi.org/10.1016/S0304-4238(98)00217-9.
Hirse T and Bazzaz F. 1996. Trade-off Between Light and Nitrogen-use Efficiency in Canopy
Photosynthesis. Annals of Botany, 82: 195–202. http://dx.doi.org/10.1006/anbo.1998.0668.
Holley J, Mattson N, Ashenafi E and Nyman M. 2022. The Impact of CO2 Enrichment on Biomass,
Carotenoids, Xanthophyll, and Mineral Content of Lettuce (Lactuca sativa L.). Horticulturae, 8, 820.
Huang Y, Eglinton G, Ineson P, Bol R and Harkness D. 1999. The effects of nitrogen fertilisation and
elevated CO2 on the lipid biosynthesis and carbon isotopic discrimination in birch seedlings (Betula
pendula). Plant Soil, 216(1–2); 35–45. http://dx.doi.org/10.1023/A:1004771431093.
Hurd R and Thomley J. 1972. An analysis of the growth of young tomato plants in water culture at different
light integral and C02 concentrations: I. Physiological aspects. Annals of Botany, 38:375-388.
http://dx.doi.org/10.1093/oxfordjournals.Annals of Botany.a084822.
Jung D, Kim D, Yoon H, Moon T, Park K and Son J. 2016. Modeling the canopy photosynthetic rate of
romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying CO2 concentrations and growth
stages. Horticulture, Environment, and Biotechnology, 57(5): 487-492.
http://dx.doi.org/10.1007/s13580-016-0103-z.
Kang H, KrishnaKumar S, Atulba SS, Jeong BR and Hwang SJ.2013. Light intensity and photoperiod
influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant
factory system. Horticulture, Environment, and Biotechnology, 54(6): 501-509.
https://doi.org/10.1007/s13580-013-0109-8.
Larios B, Agüera E, de la Haba P, Pérez-Vicente R and Maldonado J. 2001. A shortterm exposure of
cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate
reductase expression and activity. Planta, 212 (2): 305–312. http://dx.doi.org/10.1007/s004250000395.
Larsen D, Woltering E, Nicole C and Marcelis L. 2020. Response of Basil Growth and Morphology to Light Intensity and Spectrum in a Vertical Farm. Frontiers in Plant Science. 2020 Dec 4;11:597906. doi: 10.3389/fpls.2020.597906. PMID: 33424894; PMCID: PMC7793858.
Lea US, Leydecker M, Quilleré I, Meyer C and Lillo C. 2006. Posttranslational regulation of nitrate
reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation
has only minor influence. Plant Physiolgy. American. Society. Plant Biology,140(3): 1085–
1094.doi.org/10.1104/pp.105.074633.
Li X, Zhang G, Sun B, Zhang S, Zhang Y, Liao Y, Zhou Y, Xia X, Shi K and Yu J. 2013. Stimulated leaf
dark respiration in tomato in an elevated carbon dioxide atmosphere. Nature Publishing Group Sciences. Reports, 3: 3433. http://dx.doi.org/10.1038/srep03433.
Liu JX, Zhang DQ, Zhou G, FaivreVuillin B, Deng Q and Wang CL. 2008. CO2 enrichment increases
nutrient leaching from model forest ecosystems in subtropical China. Biogeosciences Discussions, 5:2679–2706. http://dx.doi.org/10.5194/bgd-5-2679-2008.
Lotfiomran N, Kohl M and Fromm J. 2016. Interaction effect between elevated CO2 and fertilization on
biomass, gas exchange and C/N ratio of European beech (Fagus sylvatica L.). Plants, 5(3): 38.
http://dx.doi.org/10.3390/plants5030038.
Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A and Stitt M. 2001. Elevated carbon dioxide increases
nitrate uptake and nitrate reductase activity when Tobacco is growing on nitrate, but increases
ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium
nitrate. Plant Cell Environment, 24 (11): 1119–1137. http://dx.doi.org/10.1046/j.1365-3040.2001.00771.x.
Morgan JV. 1986. Chemical and environmental control of growth during propagation of tomato plants for
transplanting. Acta Horticulture, 190:523-530. http://dx.doi.org/10.1016/0304-4238(93)90137-F.
Mortensen LM and Moe R. 1983. Growth responses of some greenhouse plants to environment. VI. Effect
of CO2 and artificial light on growth of Chrysanthemum morfolium Ramat. Scientia Horticulturae,
19(1/2):141–147.
Nájera C and Urrestarazu M. 2019. Effect of the Intensity and Spectral Quality of LED Light on Yield and
Nitrate Accumulation in Vegetables. Hort Science Hortci, 54(10): 1745-
Nilsen S, Hovland K, Dons C and Sletten SP. 1983. Effect of CO2 enrichment on photosynthesis, growth
and yield of tomato Scientia Horticuturae. 20: 1-14. https://doi.org/10.1016/0304-4238(83)90106-1.
Nunes-Nesi A, Fernie AR and Stitt M. 2010. Metabolic and signaling aspects underpinning the regulation
of plant carbon nitrogen interactions. Molecular Plant, 3 (6): 973–996.
Pan T, Ding J, Qin G, Wang Y, Xi L, Yang J, Li J, Zhang J and Zou Z. 2019. Interaction of Supplementary
Light and CO2 Enrichment Improves Growth, Photosynthesis, Yield, and Quality of Tomato in Autumn
hrough Spring Greenhouse Production. Hort Science Hortci, 54(2): 246- 252. https://doi.org/10.21273/HORTSCI13709-18.
Radetsky L, Patel J S and Rea MS. 2020. Continuous and Intermittent Light at Night, Using Red and Blue
LEDs to Suppress Basil Downy Mildew Sporulation. Hort Science Hortsci, 55(4): 483- 486. https://doi.org/10.21273/HORTSCI14822-19.
Radoglou K M and Jarvis PG. 1990. Effects of CO2 Enrichment on Four Poplar Clones. I. Growth and Leaf
Anatomy, Annals of Botany,65(6): 617–626. https://doi.org/10.1093/oxfordjournals.aob.a087978.
Riachi L and De Maria C. 2015. Peppermint antioxidants revisited. Food Chem. 176,72–81.
Sage RF, Sharkey TD and Seemann JR. 1989. Acclimation of Photosynthesis to Elevated CO(2) in Five C(3) Species. Plant Physiolgy, 89(2):590-6. doi: 10.1104/pp.89.2.590.
Shenping Xu, Xiaoshu Z, Chao L and Qingsheng Ye. 2014. Effects of CO2 enrichment on photosynthesis
and growth in Gerbera jamesonii Scientia Horticulturae, 177: 77-84. doi.org/10.1016/j.scienta.2014.07.022.
Shuyang Z and Van-lersel M. 2017. Far-red light is needed for efficient photochemistry and photosynthesis.
Journal of Plant Physiology, 209: 115-122. https://doi.org/10.1016/j.jplph.2016.12.004.
Sipos L, Boros IF, Csambalik L, Székely, G. Jung A and Balázs L. 2020. Horticultural lighting system
optimalization: a review Scientia Horticulturae, 273: 109631. doi.10.1016/j.scienta.2020.109631.
Tabatabaie SJ. 2013. Principles of mineral nutrition of plants.Tabriz University Press, 562p.(In Persian)
Walters K, Lopez R and Behe B. 2021. Leveraging controlled-environment agriculture to increase key basil
terpenoid and phenylpropanoid concentrations: The effects of radiation intensity and CO2 concentration
on consumer preference. Frontiers in Plant Science, 11: 598519.
https://doi.org/10.3389/fpls.2020.598519.
Wang J, Liu X, Zhang X, Li L, Lam SK and Pan G. 2019. Changes in plant C, N and P ratios under
elevated [CO 2] and canopy warming in a rice-winter wheat rotation system. Scientifc reports, 9(1): 1-9.
doi.org/10.1038/s41598-019-41944-1.
Wang SY, Bunce JA and Maas L. 2003. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. Journal of Agricultural and Food Chemistry, 51 (15): 4315–4320. doi.org/10.1021/jf021172d.
XiaoYing L, ShiRong G, ZhiGang X, Xue Lei J and Tezuka T. 2011. Regulation of Chloroplast Ultrastructure, Cross-section Anatomy of Leaves, and Morphology of Stomata of Cherry Tomato by
Different Light Irradiations of Light-emitting Diodes. HortScience, 46(2): 217-221. https://doi.org/10.21273/HORTSCI.46.2.217.
Yelle S, Richard C, Beeson Jr, Trudel MJ and Gosselin A. 1990. Duration of CO2 Enrichment
Influences Growth, Yield, and Gas Exchange of Two Tomato Species. Horticultural science, 115(1):52-57. doi: 10.1021/jf021172d.