Akhtar MS and Siddiqui ZA, 2009. Effects of phosphate solublizing microorganisms and Rhizobium sp.on the growth, nodulation, yield and root-rot disease complex of chickpea under field condition. African J Biotec 8 (15): 3489-3496. DOI: 10.5897/AJB09.369
Al-Karaki GN, 2000. Growth of plant mycorrhiza tomato and mineral acquisition under salt stress. Mycorrhiza, 10: 51-54. https://doi.org/10.1007/s005720000055
Anandham R, Sridar R, Nalayini P, Poonguzhali S, Madhaiyan M and Tongmin S, 2007. Potential for plant growth promotion in groundnut (
Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium. Microbiological Research, 162: 139- 153. DOI:
10.1016/j.micres.2006.02.005
Antoun J, 1998. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes. (Raphanus sativus L.). Plant and Soil, 204: 57-67. https://doi.org/10.1007/978-94-017-2321-3_5
Arpana J and Bagyaraj DJ. 2007. Response of Kalmegh to an arbuscular mycorrhizal fungus and a plant growth promoting rhizomicro organism at two levels of phosphorus fertilizer. American-Eurasian Journal Agriculture and Environmental Scien
ce, 2: 33-38
http://www.idosi.org/aejaes/aejaes.htm
Arya SS , Salve AR, Chauhan S. 2016. Peanuts as functional food: A Review. J. Food Sci. Technol, 53 (1): 31–41. DOI https://doi.org/10.1007/s13197-015-2007-9
Barea JM, Pozo MJ, Azcon R and Azcon-Aguilar C. 2005. Microbial co-operation in the rhizosphere. Journal of experimental botany, 56(417): 1761-1778.
https://doi.org/10.1093/jxb/eri197
Baum C, El-Tohamy W and Gruda N. 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Scientia Horticulturae, 187: 131-141.
https://doi.org/10.1016/j.scientia.2015.03.002
Berta G, Fusconi A, and Hooker JE. 2002. In: S. Gianinazzi, H. Schuepp, J. M. Barea and K. Haselwandter (Eds). Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. Mycorrhiza Technology in Agriculture, from Genes to Bioproducts. Basel, Switzerland, Birkhauser Verlag p. 71-85. DOI https://doi.org/10.1007/978-3-0348-8117-3_6
Cottenie A. 1980. Soil and plant Testing. FAO Soils Bulletin, No. 38/2, pp. 94-100.
Darzi MT, Ghalavand A, Sefidkon F and Rejali F.2009. The effects of mycorrhiza, vermicompost and phosphatic biofertilizer application on quantity and quality of essential oil in Fennel (
Foeniculum vulgare Mill.) Iranian Journal of Medicinal and Aromatic Plants, 24(4): 396-413 URL:
HTTP://www.rifr-ac.ir CABI Record Number: 20093145044
Enayati A, Barmaki M, Seyed Sharifi R and Gholizadeh A. 2020. Effect of
Azotobacter chroococcum and
Glomus intraradices on Yield, Yield Components and Germination of Derived Seeds under supplementary Irrigation in some of Wheat (
Triticum aestivum L.) Varieties. Journal of Agroecology, 11(4): 1309-1326. (In Persian with English Abstract).DOI:
10.22067/JAG.V11I4.71105
Esmaielpour B, Jalilvand P and Hadian J. 2013. Effect of drought stress and arbuscular mycorrhizal fungi on some morphological traits and yield of savory (
Satureja hortensis L.). Journal of Agroecology, 5 (2): 169-177. DOI:
10.22067/JAG.V5I2.24496 FAO, 2018. http://www.fao.org/faostat/en/#data/QC.
Gholami K Z, Salehi A, Movahedi DM and Moradi A. 2018. Effect of Mycorrhizal and Phosphate Barvar 2 on Yield and Yield Components and Oil Content of Safflower (Carthamus tinctorius L. cultivar soffeh) under Drought Stress. Agriculture Science and Sustainable production, 28 (4): 125-139. (In Persian with English Abstract).
George E, Marshner H and Jakobsen I. 1995. Role of Arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Critical Review of Biotechnol, 15:257-270. doi.org/10.3109/07388559509147412
Jiriaie M, Fateh E and Aynehband A. 2014. Evaluation the morph physiological changes in wheat cultivars from the use of
Mycorrhiza and
Azospirillum. Iranian Journal of Field Crops Research, 12: 841-851. (In Persian with English Summary). DOI:
10.22067/GSC.V12I4.29368
Kassam A and Brammer H. 2013. Combining sustainable agricultural production with economic and environmental benefits. Geographical Journal, 179: 11–18. DOI:
10.2307/23360882
Liu H, Song F, Liu S, Li X, Liu F and Zhu X. 2018. Arbuscular mycorrhiza improves nitrogen use efficiency in soybean grown under partial root-zone drying irrigation. Archives of Agronomy and Soil Science, 65:269–279. https://doi.org/10.1080/03650340.2018.1493724
Lotfollahi A, Bolandnazar S, Aliasgharzad N, Khoshru B and Siami A. 2020. Effects of Inoculation with Arbuscular Mycorrhiza and Mycorrhiza-Like Fungi on Growth and Phosphorus Uptake of Coriander. Sustainable Agriculture, 31(1): 87-101. DOI:
10.22034/SAPS.2021.12791
Mandal A, Patra AK, Singh D, Swarup A and Masto RE. 2007. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresource technology, 98(18): 3585-3592. DOI:
10.1016/j.biortech.2006.11.027
Mehrvarz S, and Chaichi MR. 2008. Effect of phosphate solubilizing microorganisms andphosphorus chemical fertilizer on forage and grain quality of barely (Hordeum vulgare L.). American-Eurasian Journal of Agriculture and Environmental Sciences, 3(6): 855-860.
Moradi S, Besharati H , Feizi Asl V, Nadian H, Karimi E, and Golchin A. 2009. Effect of different levels of humidity, mycorrhiza and Rhizobium in germination, flowering time and morphological traits in chickpea. In: 11th Iranian Soil Science Congress, Gorgan, Iran, 12-15 July. p. 243-244. (In Persian with English Abstract).
Rasipour L and Aliasgharzadeh N. 2007. Interacative effect of Phosphate Solubilizing Bacteria and Bradyrhizobium japonicum on Growth, Nodule indices and some Nutrient Uptake of Soybean, Journal of Hydrology and Soil Science, 11 (2), 53.
Redecker D and Raab P. 2006. Phylogeny of The Glomeromycota arbuscular mycorrhizal fungi: recent developments and new gene markers. Mycologia, 98(6): 885-895. http://doi.org/10.1080/15572536.2006.11832618
Rillig MC and Mummey DL. 2006. Mycorrhizas and soil structure. New Phytologist, 171: 41-53. https://doi.org/10.111/j.1469-8137.2006.01750.x
Ruiz-Lozano JM. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13: 309-317. DOI https://doi.org/10.1007/s00572-003-0237-6
Schubler A, Schwarzott D and Wallker C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 105(12): 1432-1441. https://doi.org/10.1017/S0953756201005196
Sharma RC, Sarkar S, Das D and Banik P. 2013. Impact assessment of arbuscular mycorrhiza
Azospirillum and chemical fertilizer application on soil health and ecology. Communications in Soil Science and Plant Analysis Anal, 44:1116–1126.
https://doi.org/10.1080/00103624.2012.750335
Shilman F, Brand , Brand A, Hedvat I, Hovav R. 2011. Identification and molecular characterization of homeologous Δ9-stearoyl acyl carrier protein desaturase 3 genes from the allotetraploid peanut (Arachis hypogaea). Plant Molecular Biology Reporter, 29: 232–241. https://doi.org/10.1007/s11105-010-0226-9
Subramanian KS, Charest C, Dwyer LM, and Hamilton RI. 1997. Effects of arbuscular mycorrhizae on leaf water potential, sugar content, and P content during drought and recovery of maize. Canadian Journal of Botany, 75: 1582-1591.
https://doi.org/10.1139/b97-870
Tabatabaei SJ. 2013. Principles of Mineral Nutrition of Plants. Tabriz University Press
Toudou, D.A.K., Atta, S., Inoussa, M.M., Hamidou, F., Bakasso, Y., 2020. Agro- 806 morphological response of some groundnut genotypes (Arachis hypogaea L.) in 807 water deficit conditions. Afr. J. Agric. Res. 16 (5), 622–631. DOI:
10.5897/AJAR2020.14775
Varshney RK, Pandey M K and Puppala N. 2017. The peanut genome. Springer .
Widada J, Damarjaya DI, and Kabirun S. 2007. In: Velazquez, E., and Rodriguez-Barrueco, C. (eds). The interactive effects of arbuscular mycorrhizal fungi and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. First International Meeting on Microbial Phosphate Solubilization. Springer, p. 173-177. https://doi.org/10.1007/978-1-4020-5765-6_26
Wu QS, Xia RX, Zou YN, and Wang GY. 2007. Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliate) seedlings to drought stress. Acta physiologica Plantarum, 29: 543-549. DOI 10.1007/s11738-007-0065-y
Zuccarini P. 2007. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environment, 53(7): 283-289. DOI: 10.17221/2209-PSE