آنالیز رشد گندم (.Triticum aestivum L)در شرایط تغییر اقلیم استان فارس با استفاده از مدل‌های مکانیستیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه کشاورزی اکولوژیک، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران.

2 گروه تولیدات گیاهی، دانشکده کشاورزی، مجتمع آموزش عالی سراوان، سراوان، ایران.

چکیده

این تحقیق در سه شهرستان اقلید، شیراز و لار که به ترتیب با آب و هوای سرد، معتدل و گرم و خشک هستند صورت گرفت. بدین منظور از مدل گردش عمومی HadCM3 تحت سه سناریوی انتشار A2، B1 و A1B طی سه دوره اقلیمی آینده (30-2011، 65-2045 و 99-2080) استفاده شد. همچنین از مدل APSIM به منظور شبیه‌سازی رشد و عملکرد گندم استفاده شد. نتایج نشان داد که در دوره آینده بیوماس، عملکرد دانه و شاخص برداشت در مناطق و سناریو‌های مختلف انتشار با افزایش غلظت دی‌اکسید کربن (531 پی­پی­ام، متوسط تمامی سناریوها و دوره ها) و دما، روندی صعودی خواهند داشت به طوری که دوره 99-2080 تحت سناریوی A2 در شهرستان اقلید با بیوماس و عملکرد دانه به ترتیب حدود 2786 و 2/1051 گرم بر متر مربع بیشترین مقدار را خواهند داشت. همچنین در دوره آینده میزان فتوسنتز با افزایش غلظت دی‌اکسید کربن افزایش می‌یابد بنابراین سطح برگ و دوام آن نسبت به دوره پایه روند صعودی خواهد داشت. چنانچه دوره 99-2080 به طور متوسط 23/23 درصد و دوره 30-2011 به طور متوسط با 83/10 درصد بترتیب بیشترین و کمترین افزایش سطح برگ را در شهرستان‌ها و سناریو‌های انتشار خواهند داشت. در دوره‌های اقلیمی آینده تحت سناریو‌های مختلف انتشار میزان سرعت رشد و سرعت رشد نسبی با افزایش فتوسنتز و بیوماس افزایش پیدا کرد. همچنین با افزایش غلظت دی‌اکسید کربن سرعت جذب خالص نیز افزایش می‌یابد که دوره 30-2011 کمترین و دوره 99-2080 بیشترین سرعت جذب را بین دوره‌های اقلیمی آینده خواهند داشت.
 

کلیدواژه‌ها


عنوان مقاله [English]

Growth Analysis of Wheat (Triticum aestivum L.) Under Climate Change Conditions Using a Mechanistic Model in Fars Province of Iran

نویسندگان [English]

  • Yasin Qorani 1
  • Reza Deihimfard 1
  • Omid Nouri 1
  • Seyed Reza Amiri 2
چکیده [English]

The current study was carried out in three locations of Fars province included Eghlid, Shiraz and Lar which have a cold, mild and hot-dry climate, respectively. The General Circulation Model HadCM3 under three emission scenarios A2, B1 and A1B in three future periods (2011-30, 2045-65 and 2080-99) was applied. APSIM crop model was also used to simulate the growth and yield of wheat. The Averaged across locations, scenarios and periods in the future, a rising trend was simulated for biomass and grain yield compared with the baseline largely owing to the increasing carbon dioxide concentration (531 ppm). As an example, the highest biomass and grain yield was observed with 2786 and 1051 g.m-2, respectively in Eghlid in 2080-99 under the A2 scenario. Furthermore, considering that the rate of photosynthesis will be increased by increasing the carbon dioxide concentration in the future period, it will have the rising trend compared to the baseline period. According to the result of simulations, the highest increase in LAI was obtained under A2 scenario for 2080-99 in all of locations (23.23%) while the lowest increase in LAI under A2 and B1 observed for 2011-30 (10.83%). The growth and relative growth rates will be increased by increasing of photosynthesis rate and biomass in the all future periods under different emission scenarios. Overall, the results showed that increasing the carbon dioxide concentration in the future resulted in increased NAR. Accordingly, the highest and lowest NAR was simulated for 2080-99 and 2011-30, periods.
 

کلیدواژه‌ها [English]

  • Biomass
  • Grain Yield
  • Growth Indices
  • Photosynthesis
  • Simulation of Growth
 
Aggarwal PK and Mall R, 2002. Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Climatic Change,
52, 331-343.
Ainsworth EA and Long SP, 2005. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 New Phytologist, 165: 351-372.
Donald C and Hamblin J. 1976. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Advances in Agronomy, 28: 361-405.
Ghasemi Golozani K, Mohammadi S, Rahim Zadeh P and Moghadam M. 1997. Quantitative relationship between density and yield of three chickpea cultivars in different planting dates. Journal of Plant Physiology and Breeding, 7: 59-73. (In Persian(.
Hunt R. 1990. Basic growth analysis: plant growth analysis for beginners. Unwin Hyman, London
Ifeanyi OC, Etuk U and Jike WO. 2012. Climate change, effects and adaptation strategies: Implication for agricultural extension system in Nigeria. Greener Journal of Agricultural Sciences, 2: 53-60.
Izaurralde RC, Rosenberg NJ, Brown RA and Thomson AM. 2003. Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States: Part II. Regional agricultural production in 2030 and 2095. Agricultural and Forest Meteorology, 117: 97-122.
Kapur P and Govil SR. 2004. Experimental Plant Ecology. CBS Publishers and Distributors, New Delhi.
Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JN, Meinke H and Hochman Z. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18: 267-288.
Koocheki A and Kmali GH. 2010. Climate change and the production of wheat in Iran. Iranian Journal of Field Crops Research, 8: 508-520.
Koocheki A, Nassiri M and Sharifi HR. 2001. A simulation study for growth, phenology and yield of wheat cultivars under the doubled CO2 concentration in Mashhad conditons.Biaban,6: 117-127.
Koocheki A and Nassiri M. 2009. impacts of climate change and co2 concentration on wheat yield in Iran and adaptation strategies. Iranian Journal of Field Crops Research, 6: 139-153. (In Persian).
Krishnan P, Swain D, Bhaskar B.C, Nayak S and Dash R. 2007. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems & Environment, 122: 233-242.
Ludwig F and Asseng S. 2006. Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agricultural Systems, 90: 159-179.
Luo Q, Bellotti W, Williams M and Bryan B. 2005. Potential impact of climate change on wheat yield in South Australia. Agricultural and Forest Meteorology, 132: 273-285.
Mitchell TD. 2003. Pattern scaling: an examination of the accuracy of the technique for describing future climates. Climatic Change, 60: 217-242.
Moradi R, Koocheki A and Nassiri Mahallati M. 2013.  Effect of Climate Change on Maize Production and Shifting of Planting Date as Adaptation Strategy in Mashhad. Journal of Agricultural Science And Sustainable Production, 23: 111-130. 
Nakicenovic N and Swart R. 2000. Special report on emissions scenarios. Special Report on Emissions Scenarios, Edited by Nebojsa Nakicenovic and Robert Swart, pp. 612. ISBN 0521804930. Cambridge, UK: Cambridge University Press, July 2000. 1.
Neild RE and Seeley MW. 1977. Growing degree days predictions for corn and sorghum development and some applications to crop production in Nebraska.
Olesen JE, Trnka M, Kersebaum K, Skjelvåg A, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J and Micale F. 2011. Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34: 96-112.
Prasad P, Boote K, Allen L, Sheehy J and Thomas J. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 95: 398-411.
Prudhomme C, Wilby R, Crooks S, Kay A and Reynard N. 2010. Scenario-neutral approach to climate change impact studies: application to flood risk. Journal of Hydrology, 390: 198-209.
Reidsma P, Ewert F, Lansink AO and Leemans R. 2010. Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. European Journal of Agronomy, 32, 91-102.
Robredo A, Pérez-López U, de la Maza HS, González-Moro B, Lacuesta M, Mena-Petite A and Muñoz-Rueda A. 2007. Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environmental and Experimental Botany, 59: 252-263.
Russelle M, Wilhelm W, Olson R and Power JF. 1984. Growth analysis based on degree days. Crop Science, 24: 28-32.
Seneweera, S., Aben, S., Basra, A., Jones, B. and Conroy, J. 2003. Involvement of ethylene in the morphological and developmental response of rice to elevated atmospheric CO2 concentrations. Plant Growth Regulation, 39(2): 143-153.
Singh AK, Tripathy R and Chopra UK. 2008. Evaluation of CERES-Wheat and CropSyst models for water–nitrogen interactions in wheat crop. Agricultural Water Management, 95: 776-786.
Shoor M, Goldani M and Mondani F 2009. Effect of CO2 enrichment on morphophysiologycal traits in Tagets spp, Ageratum spp and Gaillardias spp in greenhouse condition. Journal of Agroecology, 1: 101-108.
Spiegel MR, 1968. Mathematical handbook of formulas and tables.
Traoré S, Mason SC, Martin AR, Mortensen DA and Spotanski JJ. 2003. Velvetleaf interference effects on yield and growth of grain sorghum. Agronomy Journal, 95: 1602-1607.
Valizadeh J, Ziaei S and Mazloumzadeh S. 2014. Assessing climate change impacts on wheat production (a case study). Journal of the Saudi Society of Agricultural Sciences, 13: 107-115.
Wetterhall F, Bárdossy A, Chen D, Halldin S and Xu Cy. 2009. Statistical downscaling of daily precipitation over Sweden using GCM output. Theoretical and Applied Climatology, 96: 95-103.