اثرات محلول پاشی سالیسیلیک اسید و کینتین بر واکنش های فیزیولوژیکی سویا در سطوح مختلف تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی دانشکده کشاورزی دانشگاه ارومیه

2 تولید و ژنتیک گیاهی/ هیات علمی

3 گروه مهندسی کامپیوتر، دانشکده برق و کامپیوتر، دانشگاه ارومیه

چکیده

اهداف: این تحقیق به منظور بررسی تأثیر کینتین و سالیسیلیک اسید بر کاهش تنش‌های یونی، اسمزی و اکسیداتیو در شرایط شوری انجام شد.
مواد و روش‌ها: آزمایش بر اساس طرح فاکتوریل بر پایه بلوکهای کامل تصادفی با سه تکرار انجام شد. فاکتورهای شامل شوری (0، 4، 7 و 10 دسی زیمنس بر متر) و هورمون‌ها (50 میکرو‌مولار کینتین: و 1 میلی‌مولار سالیسیلیک اسید( بودند. تعداد 20 عدد بذر رقم M7 در عمق 3 سانتی-متری هر گلدان حاوی کیلوگرم پرلیت کاشته شدند. محلول‌پاشی هورمون‌ها در مرحله رشد رویشی و زایشی انجام گرفت. یک هفته پس از تیمار نهایی آزمایشات انجام گرفتند.
یافته‌ها: شوری محتوای سدیم ریشه‌ها و برگ‌ها، مقدار پراکسید هیدروژن و مالون‌دی‌آلدئید، فعالیت کاتالاز، آسکوربات پراکسیداز، سوپراکسید دیسموتاز، آلفا-توکوفرول و محتوای قندهای محلول و پرولین برگ گیاهان سویا را افزایش داد. این در حالی است که محتوای یون‌های پتاسیم، کلسیم و منیزیم، محتوای کلروفیل، شاخص سطح برگ، شاخص پایداری غشا، محتوای نسبی آب برگ و عملکرد دانه را کاهش داد. محلول‌پاشی هورمون‌ها، سبب کاهش محتوای سدیم ریشه‌ها و برگ‌ها، مقدار پراکسید هیدروژن، مالون‌دی‌آلدئید و پرولین برگ شد، در حالیکه محتوای یون‌های پتاسیم، کلسیم و منیزیم، محتوای کلروفیل، شاخص سطح برگ، فعالیت آنتی‌اکسیدان‌ها، شاخص پایداری غشا، مقدار قندهای محلول و محتوای نسبی آب برگ را بهبود بخشیدند. برتری تیمار Kin+ SA در رابطه با پارامترهای مورد بررسی به افزایش قابل توجه عملکرد بذر گیاهان سویا منجر گردید.
نتیجه‌گیری: محلول‌پاشی هورمون‌ها، از طریق کاهش سمیت یونی و بهبود فعالیت آنتی‌اکسیدان-ها، به افزایش رشد و عملکرد بذر گیاهان سویا منجر گردید

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of foliar application of salicylic acid and kinetin on soybean physiological responses at different levels of salt stress

نویسندگان [English]

  • Javid Kardan 1
  • Reza Amirnia 1
  • Mahdi Ghiyasi 2
  • Leila Sharifi 3
1 Department ofPlant Production and Genetics, Faculty of Agriculture, Urmia University
2 Plant Production and Genetics
3 Computer Engineering Department, Electrical and Computer Faculty, Urmia University
چکیده [English]

Background and Objective: This research was undertaken to assess the impact of kinetin (Kin) and salicylic acid (SA) on alleviation of oxidative, ionic and osmotic stresses of different levels of salinity.
Materials and Methods: the experiment with factorial arrangements based on randomized complete block design with three replications were conducted at the research greenhouse of Urmia University. The investigated factors included salinity (0, 4, 7 and 10 dS/m) and hormones (50 μM kintin and 1 mM salicylic acid). 20 soybean seeds (cultivar M7) were planted at a depth of 3 cm in each pot containing 1 kg of perlite. Hormones were sprayed in the vegetative and reproductive stages. One week after the final treatment, tests were performed.
Results: Salinity increased the contents of roots and leaves sodium, the amount of H2O2 and malondialdehyde, the activities of catalase, ascorbate peroxidase, superoxide dismutase, α-tocopherol, and the contents of soluble sugars and proline of soybean leaves, but decreased potassium, calcium and magnesium ions, chlorophylls content, leaf area index, membrane stability index, leaf relative water content and seed yield. Foliar spray of hormones, especially Kin + SA, reduced Na+ content, H2O2 and malondialdehyde and proline content, while enhancing potassium, calcium and magnesium ions, chlorophylls content, leaf area index, antioxidants avtivities, membrane stability index, soluble sugars and leaf relative water content. These superiorities of Kin + SA treatment led to considerable improvement in seed yield of soybean.

کلیدواژه‌ها [English]

  • Antioxidants
  • Cytokinin
  • Salicylic acid
  • Salt toxicity
  • Soybean
Aebi H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121–126. DOI.org/10.1016/S0076-‎‎6879(84)05016-3‎
Ahanger MA and Agarwal RM. 2017. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiology and Biochemistry, 115: 449–460. DOI: 10.1016/j.plaphy.2017.04.017. Epub 2017 Apr 19.
Alscher RG, Erturk N and Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53: 1331-1341. DOI.org/10.1093/jexbot/53.372.1331
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1-14. DOI.org/10.1104/pp.24.1.1
Azooz MM, Youssef AM and Ahmad P. 2011. Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. International Journal of Plant Physiology and Biochemistry, 3: 253-264. DOI:10.5897/IJPPB11.052
Barr HD and Weatherley PE. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Sciences, 15: 413–428. DOI.org/10.1071/BI9620413
Bates LS, Waldren RP and Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. DOI.org/10.1007/BF00018060
Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaïbi W and Djebali W. 2010. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicology and Environmental Safety, 73: 1004–1011. DOI.org/10.1016/j.ecoenv.2010.03.009
Benedetto AD, Galmarini C and Tognetti J. 2013. Changes in leaf size and in the rate of leaf production contribute to cytokinin-mediated growth promotion in Epipremnum aureum L. cuttings. The Journal of Horticultural Science and Biotechnology, 88: 179-186. DOI:10.1080/14620316.2013.11512954
Cakmak I and Horst J. 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum, 83: 463-468 DOI.org/10.1111/j.1399-3054.1991.tb00121.x.
Cantabella D, Piqueras A, Acosta-Motos JR, Bernal-Vicente A, Hernández JA, Díaz-Vivancos P. 2017. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiology and Biochemistry, 115: 484–496. DOI.org/10.1016/j.plaphy.2017.04.023
Chaves MM, Flexas J and Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103: 551–560.
Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E and Ryals J. 1994. A central role of salicylic acid in plant disease resistance. Science, 266: 1247-1250. DOI: 10.1126/science.266.5188.1247
Farhangi-Abriz S and Torabian S. 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, 137: 64–70. DOI: 10.1016/j.ecoenv.2016.11.029
Ghassemi-Golezani K and Farhangi-Abriz S. 2018. Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicology and Environmental Safety, 166: 18-25. DOI:10.1016/j.ecoenv.2018.09.059
Ghassemi-Golezani K and Nikpour-Rashidabad N. 2017. Seed pretreatment and salt tolerance of dill: osmolyte accumulation, antioxidant enzymes activities and essence production. Biocatalysis and Agricultural Biotechnology, 12: 30-35. DOI.org/10.1016/j.bcab.2017.08.014
Ghassemi-Golezani K and Samea-Andabjadid S. 2022. Exogenous cytokinin and salicylic acid improve amino acid content and composition of Faba Bean seeds under salt stress. Gesunde Pflanzen, 74: 935–945. DOI:10.1007/s10343-022-00673-8
Ghassemi-Golezani K, Farhangi-Abriz S and Bandehagh A. 2018. Salicylic acid and jasmonic acid alter physiological performance, assimilate mobilization and seed filling of soybean under salt stress. Acta agriculturae Slovenica, 111: 597-607. DOI:10.14720/aas.2018.111.3.08
Giannopolitis CN and Ries SK. 1977. Superoxide dismutase I occurrence in higher plants. Plant Physiology, 59: 309- 314. DOI: 10.1104/pp.59.2.309.
Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L and Jin L. 2014. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. The Plant Journal, 80: 937-950. DOI: 10.1111/tpj.12695
Hamada K, Hasegawa K and Ogata T. 2008. Strapping and a synthetic cytokinin promote cell enlargement in ‘Hiratanenashi’Japanese persimmon. Plant Growth Regulation, 54: 225-230. DOI:10.1007/s10725-007-9244-5
Hönig M, Plíhalová L, Husičková A, Nisler J and Doležal K. 2018. Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences, 19: 4045-4067 DOI: 10.3390/ijms19124045.
Hsu YT and Kao CH. 2007. Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant and Soil, 298: 231–241.DOI.org/10.1016/S1672-6308(12)60039-0
Jampeetong A and Brix H. 2009. Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquatic Botany, 91: 181–186. DOI.org/10.1016/j.aquabot.2009.05.003
Kaya C, Tuna AL and Okant AM. 2010. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turkish Journal of Agriculture and Forestry, 34: 529-538. DOI:10.3906/tar-0906-173
Kaya C, Tuna L and Higgs D. 2006. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition, 29: 1469-1480. DOI.org/10.1080/01904160600837238
Khan HA, Siddique KH and Colmer TD. 2017. Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance. Journal of Experimental Botany, 68: 2001-2011. DOI: 10.1093/jxb/erw177
Khan MIR, Asgher M and Khan NA. 2014. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mung bean (Vigna radiata L.). Plant Physiology and Biochemistry, 80: 67–74. DOI: 10.1016/j.plaphy.2014.03.026
Kim MC, Chung WS, Yun DJ and Cho MJ. 2009. Calcium and calmodulin-mediated regulation of gene expression in plants. Molecular Plant, 2: 13–21. DOI: 10.1093/mp/ssn091
Kochert G. 1978. Carbohydrate determination by the phenol sulfuric acid method. In: JA Hellebust and JS Craigie (eds.). Handbook of Phycological Methods, Physiological and Biochemical Methods. Cambridge University Press. 95-97. DOI.org/10.1016/0044-8486(89)90041-0
Koji Y, Mitsuya S, Kawasaki M, Taniguchi M and Miyake H. 2008. Salinity induced chloroplast damages in rice leaves (Oryza sativa L.) are reduced by pretreatment with methyl viologen. 14th Australian Agronomy Conference, September, 21-25. DOI.org/10.1007/s12298-017-0440-0
Konyalιoglu S, Saglam H and Kιvçak B. 2005. α-tocopherol, flavonoid, and phenol contents and antioxidant activity of Ficus carica leaves. Pharmaceutical Biology, 43: 683–686. DOI.org/10.46243/jst.2023.v8.i05.pp57 - 71
Korkmaz A, Uzunlu M and Demirkiran AR. 2007. Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiologiae Plantarum, 29: 503-508. DOI:10.1007/s11738-007-0060-3
Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S and Garnczarska M. 2015. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. Journal of Plant Physiology, 183: 1-12. DOI.org/10.1016/j.jplph.2015.04.009
Kumari S, Kumar S and Prakash P. 2018. Exogenous application of cytokinin (6-BAP) ameliorates the adverse effect of combined drought and high temperature stress in wheat seedling. Journal of Pharmacognosy and Phytochemistry, 7: 1176-1180. DOI:10.3906/tar-0906-175‎
Lin J, Wang Y, Sun S, Mu C and Yan X. 2017. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus Chinensis seedlings under salt-alkali stress and nitrogen deposition. Science of the Total Environment, 576: 234–241.DOI: 10.1016/j.scitotenv.2016.10.091
López ML, Peralta-Videa JR, Benitez T and Gardea-Torresdey JL. 2005. Enhancement of lead uptake by alfalfa (Medicago sativa L.) using EDTA and a plant growth promoter. Chemosphere, 61: 595-598. DOI: 10.1016/j.chemosphere.2005.02.028
Ma X, Zhang J and Huang B. 2016. Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environmental and Experimental Botany, 125: 1-11. DOI:10.1016/j.envexpbot.2016.01.002
Marschner H. 1995. Mineral nutrition of higher plants. 2nd (eds) Academic Press. New York. DOI.org/10.1016/S0076-6879(84)05016-3
Martinez C, Pons E, Prats G and Leon J. 2004. Salicylic acid regulates flowering time and links defense responses and reproductive development. The Plant Journal, 37: 209-217. DOI: 10.1046/j.1365-313x.2003.01954.x
Masoumzadeh BM, Imani AA and Khayamaim S. 2012. Salinity stress effect on proline and chlorophyll rate in four beet cultivars. Analytical and Bioanalytical Chemistry Research, 3: 5453-5456. ‎. DOI.org/10.1016/j.jplph.2008.18.003‎
Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405–410. DOI: 10.1016/s1360-1385(02)02312-9
Nakano Y and Asada K. 1981.  Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in Spinach chloroplasts. Plant and Cell Physiology, 22: 867-280. DOI:10.1093/OXFORDJOURNALS.PCP.A076232
Nazar R, Iqbal N, Syeed S and Khan NA. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. Journal of Plant Physiology, 168: 807-815. DOI: 10.1016/j.jplph.2010.11.001
Ngullie CR, Tank RV and Bhanderi DR. 2014. Effect of salicylic acid and humic acid on flowering, fruiting, yield and quality of mango (Mangifera indica L.) cv.‘Kesar’. Advance Research Journal of Crop Improvement, 5: 136-139. DOI:10.15740/HAS/ARJCI/5.2/136-139
Oliveira Neto CFD, Lobato AKDS, Gonçalves-Vidigal MC, Costa RCLD, Santos Filho BGD, Alves GAR, Maia WJMS, Cruz FJR, Neves HKB and Lopes MS. 2009. Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. Journal of Food, Agriculture and Environment, 7: 588-593. DOI:10.3906/tar-0903-163‎
Orabi SA, Salman SR and Shalaby MA. 2010. Increasing resistance to oxidative damage in cucumber (Cucumis sativus L.) plants by exogenous application of salicylic acid and paclobutrazol. World Journal of Agricultural Sciences, 6: 252-259. DOI:10.1186/s12864-015-1762-9
Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G and Janda T. 2009. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiology and Biochemistry, 47: 224-231. DOI: 10.1016/j.plaphy.2008.11.007
Pushpavalli R, Quealy J, Colmer TD, Turner NC, Siddique KHM, Rao MV and Vadez V. 2016. Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na+ accumulation in leaves. Journal of Agronomy and Crop Science, 202: 125-138. DOI.org/10.1111/jac.12128
Puyang X, An M, Han L and Zhang X. 2015. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicology and Environmental Safety, 117: 96–106. DOI.org/10.1016/j.ecoenv.2015.03.023
Reddy MP and Vora AB. 1986. Changes in pigment composition. Hill reaction activity and sacharides metabolism in bajra (Penisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica, 20: 50–55. ‎. DOI.org/10.1016/j.jplph.2008.10.002‎
Samea-Andabjadid S, Ghassemi-Golezani K, Nasrollahzadeh S and Najafi N. 2018. Exogenous salicylic acid and cytokinin alter sugar accumulation, antioxidants and membrane stability of faba bean. Acta Biologica Hungarica, 69: 86-96. DOI: 10.1556/018.68.2018.1
Shi Q, Bao Z, Zhu Z, Ying Q and Qian Q. 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation, 48: 127-135. DOI:10.1007/s10725-005-5482-6
Slama I, M’Rabet R, Ksouri R, Talbi O, Debez A and Abdelly CH. 2015. Water deficit stress applied only or combined with salinity affects physiological parameters and antioxidant capacity in Sesuvium portulacastrum. Flora, 213: 69–76. DOI:10.1007/s11738-018-2774-9
Stevens J, Senaratna T and Sivasithamparam K. 2006. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regulation, 49: 77-83. DOI:10.1007/s10725-006-0019-1
Sui N, Yang Z, Liu M and Wang B. 2015. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics, 16: 534. DOI:10.1186/s12864-015-1760-5
Szczerba MW, Britto DT and Kronzucker HJ. 2009. K+ transport in plants: physiology and molecular biology. Journal of Plant Physiology, 166: 447–466. DOI.org/10.1016/j.jplph.2008.12.009
Wakeel A, Xu M and Gan Y. 2020. Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants. International Journal of Molecular Sciences, 21: 728. DOI.org/10.3390/ijms21030728
Westerman LZ. 1990. Soil testing and plant analysis. Soil Sience Society of America Journal, INC. Madison, Wisconsin USA.DOI.org/10.22067/jag.v11i2.67935
Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N and Grimm B. 2006. Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta, 224: 700–709. DOI: 10.1007/s00425-006-0249-5
Zeid IM and Shedeed ZA. 2006. Response of alfalfa to putrescine treatment under drought stress. Biologia Plantarum, 50: 635-640. ‎. DOI.org/10.1016/j.jplph.2008.11.008‎