بررسی پایداری عملکرد دانه لاین‌های امیدبخش گندم دوروم با استفاده از ترکیب خصوصیات روش‌های AMMI و BLUP

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات غلات، ﻣﺆﺳﺴﻪ ﺗﺤﻘﯿﻘﺎت اﺻﻼح و ﺗﻬﯿﻪ ﻧﻬﺎل و ﺑﺬر، ﺳﺎزﻣﺎن ﺗﺤﻘﯿﻘﺎت، آﻣﻮزش و ﺗﺮوﯾﺞ ﮐﺸﺎورزی، کرج، ایران،

2 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، داراب، ایران

3 ﺑﺨﺶ ﺗﺤﻘﯿﻘﺎت اﺻﻼح و ﺗﻬﯿﻪ ﻧﻬﺎل و ﺑﺬر، ﻣﺮﮐﺰ ﺗﺤﻘﯿﻘﺎت و آﻣﻮزش ﮐﺸﺎورزی و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ لرستان، ﺳـﺎزﻣﺎن ﺗﺤﻘﯿﻘـﺎت

4 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی دزفول، سازمان تحقیقات، آموزش و ترویج کشاورزی، دزفول، ایران

5 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه،

6 بخش تحقیقات اصلاح و تهیه نهال و بذر ، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

چکیده
اهداف:
هدف از این تحقیق، انتخاب لاین‌های امیدبخش گندم دوروم از نظر پایداری و عملکرد دانه بالا با ترکیب روش‌های BLUP و AMMI و با استفاده از شاخص‌های مختلف مبتنی بر REML/BLUP بود.
مواد و روش‌ها:
در این تحقیق تعداد 20 ژنوتیپ گندم دوروم در پنج ایستگاه تحقیقاتی کرج، کرمانشاه، خرم‌آباد، دزفول و داراب در قالب طرح بلوک‌های کامل تصادفی در 3 تکرار و در دو فصل زراعی (1400-1398) مقایسه شدند.
یافته‌ها:
نتایج نشان داد که برهمکنش اثر متقابل ژنوتیپ × محیط برای عملکرد دانه معنی‌دار است. مقایسه میانگین‌های پیش‌بینی شده عملکرد دانه با روش BLUP و همچنین آماره‌های ‌HMGV، PRGV و HMRPGV نشان داد که ژنوتیپ‌های G10، G8، G18، G9 و G14 با داشتن بیشترین میانگین پیش‌بینی شده نسبت به سایر ژنوتیپ‌ها برتر هستند. برمبنای بای‌پلات نوع سوم، ژنوتیپ‌های G1، G8، G10، G18 و G19 با عملکرد بالاتر از متوسط کل و مقدار پایین WAASB، جزء ژنوتیپ‌های برتر بودند. بر مبنای بای‌پلات چند ضلعی ژنوتیپ‌های G19، G1 و G10 با کمترین شیب خط از پایداری بیشتری برخوردار بودند. بر مبنای نقشه حرارتیWAASB/GY ژنوتیپ‌های G8، G19، G18، G4، G10 و G1 به‌عنوان ژنوتیپ‌های برتر معرفی شدند. مقایسه بین آماره‌های پایداری و شاخص‌های مبتنی بر BLUP نشان داد انطباق بالایی بین نتایج آنها وجود دارد.
نتیجه گیری:
در مجموع با توجه به نتایج بیشتر روش‌های مبتنی بر BLUP و آماره‌های تجزیه پایداری، ژنوتیپ‌های G8، G10، G18 و G19 به‌عنوان ژنوتیپ‌های پایدار معرفی شدند و می‌توانند نامزد معرفی به‌عنوان رقم جدید باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the grain yield stability of durum wheat promising lines using the combination of AMMI and BLUP methods

نویسندگان [English]

  • Tohid Najafi Mirak 1
  • manouchehr dastfal 2
  • Manouchehr Sayyahfar 3
  • Hosein Farzady 4
  • Shahryar Sasani 5
  • Hassan Zali 2
  • Fariba Naghipour 6
1 Cereal Research Dept. Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, AREEO, Karaj, Iran
2 6. Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Darab, iran
3 Seed and Plant Improvement Department, Lorestan Agricultural and Natural Resources Research and Education Center, AREEO, Khorramabad, Iran
4 7. Crop and Horticultural Science Research Department, Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful, iran
5 Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kermanshah, iran
6 Seed and Plant Improvement Department, Agricultural Research, Education and Extension Organization (AREEO), Karaj, iran
چکیده [English]

Background and objectives:
The aim of this research was to select promising durum wheat lines in terms of stability and high grain yield by combining BLUP and AMMI methods and using REML/BLUP based on different indices.
Materials and methods:
In this study, 20 durum wheat genotypes were compared in five research stations of Karaj, Kermanshah, Khorramabad, Dezful and Darab based on randomized complete blocks design in 3 replications and in two growing seasons (2019-2021).

Results:
The results showed that the genotype × environment interaction was significant for grain yield. Comparison of the predicted averages of grain yield by BLUP method and HMGV, PRGV and HMRPGV statistics showed that genotypes G10, G8, G18, G9 and G14 with the highest predicted average were superior compared to genotypes others. According to the third type biplot, G1, G8, G10, G18 and G19 genotypes with high yield and low WAASB value were among the superior genotypes. Based on the polygonal biplot, G19, G1 and G10 genotypes with the lowest line slope were more stable. Based on the heat map of WAASB/Y, genotypes G8, G19, G18, G4, G10 and G1 were introduced as superior genotypes. The comparison between stability statistics and BLUP-based indices showed that there is a high agreement between their results.
Conclusion:
In general, according to the results of BLUP based on methods and stability statistics, genotypes G8, G10, G18 and G19 were introduced as stable genotypes and can be candidates for new cultivar introduction.

کلیدواژه‌ها [English]

  • AMMI model
  • Heat map
  • Mixed model
  • REML/BLUP method
  • WAASBY
Aghaee-Sarbarzeh M, Bahari M, Farzadi H, Andarzian B, Dastfal M and NajafiMirak T. 2014. Evaluation of grain yield and its stability in durum wheat genotypes in warm and dry areas of Iran. Iranian Journal of Crop Sciences, 16(1): 1-11. (In Persian). DOR: 20.1001.1.15625540.1393.16.1.1.6
Ahakpaz F, Abdi H, Neyestani E, Hesami A, Mohammadi B, Nader Mahmoudi K, Abedi‑Asl G, Jazayeri Noshabadi MR, Ahakpaz F and Alipour H. 2021. Genotype‑by‑environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agricultural Water Management, 245:106665. https://doi.org/10.1016/j.agwat.2020.106665
Alipour H, Abdi H, Rahimi Y and Bihamta MR. 2021. Genotype‑by‑year interaction for grain yield of Iranian wheat cultivars and its interpretation using Vrn and Ppd functional markers and environmental covariables. Cereal Research Communications, 49(4):1-10. https://doi.org/10.1007/s42976-021-00130-8

Barati A, Zali H,  Pour-Aboghadare AR, Gholipour A, Koohkan SA, Shahbazi K, Mazooghian A, Jabari M, Poodineh O and Kheirgoo M. 2022a. Investigation of genotype × environment interaction using path analysis and mixed models in barley superior lines. Iranian Journal of Field Crop Science, 53 (2): 164-178. (In Persian). https://doi.10.22059/ijfcs.2021.323545.654826

Barati A, Zali H, Mazooghian A, Naghipour F, Pour-Aboughadareh A, Askari Kelestani A. 2022b. Selection of hull-less barley lines using the selection index of ideal genotype (SIIG) in Ahvaz and Darab regions. Crop Production, 15(2): 7-14. (In Persian). https://doi.10.22069/ejcp.2022.19690.2468
Benakanahalli NK, Sridhara S, Ramesh N, Olivoto T, Sreekantappa G, Tamam N, Abdelbacki AMM, Elansary HO and Abdelmohsen SAM .2021. A framework for identification of stable genotypes based on MTSI and MGDII Indexes: an example in guar (Cymopsis tetragonoloba L.). Agronomy, 11: 1221. https://doi.org/10.3390/agronomy11061221
Brennan JP, Aw-Hassan A, Quade KJ and Nordblom TL. 2002. Impact of ICARDA Research on Australian Agriculture, Economic Research Report No. 11. NSW Agriculture, Wagga. https://hdl.handle.net/20.500.11766/8728
Coan MMD, Marchioro VS, Franco FDA, Pinto RJB, Scapim CA and Baldissera JNC. 2018. Determination of genotypic stability and adaptability in wheat genotypes using mixed statistical models. Journal of Agricultural Science and Technology, 20: 1525-1540. DOR: 20.1001.1.16807073.2018.20.7.16.0
Eberhart SA and Russel WA. 1966. Stability parameters for comparing varieties. Crop Science, 6: 36-40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x
Francis TR and LW Kannenberg. 1978. Yield stability studies in short-season maize. 1. A descriptive method for grouping genotypes. Canadian Journal of Plant Science, 58: 1029-1034. https://doi.org/10.4141/cjps78-157
Gholizadeh A, Ghaffari M and Shariati F. 2021. Use of selection index of ideal genotype (SIIG) in order to select new high yielding sunflower hybrids with desirable agronomic characteristics. Journal of Crop Breeding, 13(38): 116-123. (In Persian). https://doi.10.52547/jcb.13.38.116
Haghighatnia, H. and Alhani, F. 2020.  Evaluation of irrigation water salinity tolerance indices in new cultivars and lines of safflower. Iranian Journal of Soil and Water Research, 51(7): 1181-1821. (In Persian). https://doi.10.22059/ijswr.2020.299239.668552
Henderson CR. 1975. Best linear unbiased estimation and pre-diction under a selection model. Biometrics, 31: 423-447. https://doi.org/10.2307/2529430
Holland JB. 2006. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Science, 46: 642-654. https://doi.org/10.2135/cropsci2005.0191
Karimizadeh R, Pezeshkpour P, Barzali M, Mehraban A and Sharifi P. 2020. Evaluation the mean performance and stability of lentil genotypes by combining features of AMMI and BLUP techniques. Journal of Crop Breeding, 12 (36): 160-170. (In Persian). https://doi.10.52547/jcb.12.36.160
Mirzaei MR, Hemayati, SS. 2021. The effect of environment and maternal plant on germination traits of sugar beet seeds and an approach to select the superior genotype. Agricultural Research, 11, 608-614. https://doi.org/10.1007/s40003-021-00607-2
Najafi Mirak T, Dastfal M, Andarzian B, Farzadi H, Bahari M and Zali H. 2018a. Stability analysis of grain yield of durum wheat promising lines in warm and dry areas using parametric and non-parametric methods. Journal of Crop Production and Processing, 8 (2): 79-96. (In Persian). https://doi.10.29252/jcpp.8.2.79
Najafi Mirak T, Dastfal M, Andarzian B, Farzadi H, Bahari M and Zali H. 2018b. Assessment of non-parametric methods in selection of stable genotypes of durum wheat (Triticum turgidum L. var. durum). Iranian Journal of Crop Sciences, 19(2): 126-138. (In Persian). DOR: 20.1001.1.15625540.1397.20.2.3.8
Nassar R and Huehn M. 1987. Studies on estimation of phenotypic stability: Tests of significance for non-parametric measures of phenotypic stability. Biometrics, 43: 45-53. https://doi.org/10.2307/2531947
Olivoto T, Licio ADC, da Silva JAG, Sari BG and Diel MI. 2019a. Mean performance and stability in multi-environment trials II: selection based on multiple traits. Agronomy Journal, 111(6): 2961-2969. https://doi.org/10.2134/agronj2019.03.0221
Olivoto T, Licio ADC, da Silva JAG, Marchioro VS, de Souza VQ and Jost E. 2019b. Mean performance and stability in multi-environment trials I: combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6): 2949-2960. https://doi.org/10.2134/agronj2019.03.0220
Olivoto T and Lucio AD. 2020. Metan: an R package for multi-environment trial analysis. Methods in Ecology and Evolution, 11: 783-789. https://doi.org/10.1111/2041-210X.13384
Pour-Aboughadareh A, Yousefian M, Moradkhani H, Poczai P and Siddique KHM. 2019. STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Applications in Plant Sciences, 7(1): 1-6. https://doi.10.1002/aps3.1211
Pour-Aboughadareh A, Sanjani S, Nikkhah-Chamanabad H, Mehrvar MR, Asadi A and Amini A. 2021. Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bulletin of the National Research Centre, 45: 117. https://doi.org/10.1186/s42269-021-00576-0
Resende MDVd. 2002. Software SELEGEND-REML/BLUP. Colombo: EMBRAPA Floresta.   https://doi.10.4236/ajps.2013.412300 
Resende MDVd. 2016. Software Selegen-REML/BLUP: A useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16: 330-339. https://doi.org/10.1590/1984-70332016v16n4a49
Sharifi P, Abbasian A, Mohaddesi A. 2021. Evaluation the mean performance and stability of rice genotypes by combining features of AMMI and BLUP techniques and selection based on multiple traits. Plant Genetic Researchers, 7 (2):163-180. https://doi.10.52547/pgr.7.2.13
Shukla GK. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29: 237-245. https://doi.org/10.1038/hdy.1972.87
Smith AB, Cullis BR and Thompson R. 2005. The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. Journal of Agriculture Science,143 (1): 449-462. https://doi.org/10.1017/S0021859605005587
Thennarasu K. 1995. On certain non-parametric procedures for studying genotype-environment interactions and yield stability. Ph.D. Thesis. P. J. School, IARI, New Delhi.

Zali H, Sofalian O, Hasanloo T, Asgharii A and Hoseini SM. 2015. Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum – An International Journal, 7(2): 703-711. https://www.researchgate.net/publication/284898993

Zali H, Hasanloo T, Sofalian O, Asghari A and Zeinalabedini M. 2017. Appropriate Strategies for Selection of Drought Tolerant Genotypes in Canola. Journal of Crop Breeding, 8(20): 77-90. (In Persian). DOR: 20.1001.1.22286128.1395.8.20.7.4
Zali H, Barati A, Pour-Aboughadareh A, Gholipour A, Koohkan S, Marzoghiyan A, Bocianowski J, Bujak H, Nowosad K. 2023. Identification of superior barley genotypes using selection index of ideal genotype (SIIG). Plants, 12: 1-16. https://doi.org/10.3390/plants12091843