Adebayo M, Menkir A, Hearne S and Kolawole A. 2017. Gene action controlling normalized difference vegetation index in crosses of elite maize (Zea mays L.) inbred lines. Cereal Research Communications, 45(4): 675-686. https://doi.org/10.1556/0806.45.2017.043
Alam A, Ahmed S, Begum M and Sultan M. 2008. Heterosis and combining ability for grain yield and its contributing characters in maize. Bangladesh Journal of Agricultural Research, 33(3): 375-379. https://doi.org/10.3329/bjar.v33i3.1596
Ali S, Khan NU, Gul R, Naz I, Goher R, Ali N, Khan SA, Hussain I and Saeed M. 2018. Genetic analysis for earliness and yield traits in maize. Pakistan Journal of Botany, 50(4): 1395-1405.
Allen RG, Pereira LS, Raes D and Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome. 300(9): D05109.
Anjorin F, Adejumo S, Agboola L and Samuel Y. 2016. Proline, soluble sugar, leaf starch and relative water contents of four maize varieties in response to different watering regimes. Cercetari Agronomice in Moldova, 49(3): 51-62. https://repository.iuls.ro/xmlui/handle/20.500.12811/1182
Aslam M, Maqbool MA and Cengiz R. 2015. Drought stress in maize (Zea mays L.): Effects, resistance mechanisms, global achievements and biological strategies for improvement. Cham: Springer. https://doi.org/10.1007/978-3-319-25442-5
Atanaw A, Wali MC, Salimath P and Jagadeesha R. 2006. Combining ability, heterosis and per se performance in maize maturity components. Karnataka Journal of Agricultural Sciences, 19(2): 268-271.
Bolaños J and Edmeades G. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research, 48(1): 65-80. https://doi.org/10.1016/0378-4290(96)00036-6
Campos H, Cooper M, Habben J, Edmeades G and Schussler J. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Research, 90(1): 19-34. https://doi.org/10.1016/j.fcr.2004.07.003
Chen J, Xu W, Burke JJ and Xin Z. 2010. Role of phosphatidic acid in high temperature tolerance in maize. Crop Science, 50(6): 2506-2515. https://doi.org/10.2135/cropsci2009.12.0716
Chiuta NE and Mutengwa CS. 2020. Combining ability of quality protein maize inbred lines for yield and morpho-agronomic traits under optimum as well as combined drought and heat-stressed conditions. Agronomy, 10(2): 184. https://doi.org/10.3390/agronomy10020184
Connor DJ, Loomis RS and Cassman KG. 2011. Crop ecology: productivity and management in agricultural systems. New York, USA: Cambridge University Press.
Dai W, Girdthai T, Huang Z, Ketudat-Cairns M, Tang R and Wang S. 2016. Genetic analysis for anthocyanin and chlorophyll contents in rapeseed. Ciencia Rural, 46(5): 790-795. https://doi.org/10.1590/0103-8478cr20150564
Daryanto S, Wang L and Jacinthe PA. 2016. Global synthesis of drought effects on maize and wheat production. Plos One, 11(5): e0156362. https://doi.org/10.1371/journal.pone.0156362
Di Paolo E and Rinaldi M. 2008. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Research, 105(3): 202-210. https://doi.org/10.1016/j.fcr.2007.10.004
Dutta T, Neelapu NR, Wani SH and Challa S. 2018. Compatible solute engineering of crop plants for improved tolerance toward abiotic stresses. In: biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants, 221-254 (Ed W. SH). United States: Academic Press. https://doi.org/10.1016/B978-0-12-813066-7.00012-7
El-Sherif L, El-Eshmawiy K, El-Ghareeb N and Mohamed K. 2012. An analytical economic study of the corn crop at the world level. Australian Journal of Basic and Applied Sciences, 6(3): 734-740. http://www.ajbasweb.com/ajbas/2012/March/734-740.pdf
FAOSTAT. 2018. Food and Agricultural Organization Statistical Database. Rome, Italy: FAO.
http://faostat.fao.org.
FAOSTAT. 2021. Food and Agricultural Organization Statistical Database. Rome, Italy
: FAO.
http://faostat.fao.org.
Farshadfar E. 1998. The application of quantitative genetics in plant breeding. Razi University Press. Kermanshah, Iran. (In persian). http://dx.doi.org/10.5539/jas.v4n9p1
Hallauer AR, Carena MJ and Miranda Filho Jd. 2010. Quantitative genetics in maize breeding. (3rd Edition). Springer-Verlag New York. 1-22p. https://doi.org/10.1007/978-1-4419-0766 -0
Hawkins TS, Gardiner ES and Comer GS. 2009. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal for Nature Conservation, 17(2): 123-127. https://doi.org/10.1016/j.jnc.2008.12.007
Hayman B and Mather K. 1955. The description of genic interactions in continuous variation. Biometrics, 11(1): 69-82. https://doi.org/10.2307/3001481
Hefny M. 2010. Genetic control of flowering traits, yield and its components in maize (Zea mays L.) at different sowing dates. Asian Journal of Crop Science, 2(4): 236-249. http://www.scialert.net/fulltext/?doi=ajcs.2010.236.249&org=11
Iqbal M, Khan K, Sher H and Al-Yemeni MN. 2011. Genotypic and phenotypic relationship between physiological and grain yield related traits in four maize (Zea mays L.) crosses of subtropical climate. Scientific Research and Essays, 6(13): 2864-2872. http://www.academicjournals.org/SRE/PDF/pdf2011/4Jul/Iqbal%20et%20al.pdf
Irshad ul Haq M, Kamal N, Khanum S, Siddique M and Arshadullah M. 2014. Generation mean analysis for flowering characteristics in maize (Zea mays L.). Persian Gulf Crop Protection, 3(1): 18-24.
Kahriman F, Egesel C, Cebeci R, Demir A and Bayraktar S. 2015. Genetic Analysis of Flowering in Maize based on Calendar and Thermal Time. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 25(2): 193-199. https://doi.org/10.29133/yyutbd.236302
Kumar TS, Reddy DM, Naik VS, Parveen SI and Subbaiah P. 2012. Gene action for yield and morpho-physiological traits in maize (Zea mays L.) inbred lines. Journal of Agricultural Science, 4(5): 13-16. http://dx.doi.org/10.5539/jas.v4n5p13
Lima VJd, Amaral Júnior ATd, Kamphorst SH, Bispo RB, Leite JT, Santos TdO, Schmitt KFM, Chaves MM, Oliveira UAd and Santos PHAD. 2019. Combined dominance and additive gene effects in trait inheritance of drought-stressed and full irrigated popcorn. Agronomy, 9(12): 782. https://doi.org/10.3390/agronomy9120782
Maazou ARS, Tu J, Qiu J and Liu Z. 2016. Breeding for drought tolerance in maize (Zea mays L.). American Journal of Plant Sciences, 7(14): 1858. http://dx.doi.org/10.4236/ajps.2016.714172
Mather K and Jinks JL. 1982. Biometrical genetics: the study of continuous variation. Springer. https://doi.org/10.1007/978.1.4899.3406.2
Moradi M, Choukan R, Heravan EM and Bihamta MR. 2014. Genetic analysis of various morpho-physiological traits in Zea mays L. using graphical approach under normal and water stress conditions. Research on Crops, 15(1): 62-70. https://doi.org/10.5958/j.2348-7542.15.1.008
Naroui Rad MR, Kadir MA, Yusop MR, Jaafar HZ and Danaee M. 2013. Gene action for physiological parameters and use of relative water content (RWC) for selection of tolerant and high yield genotypes in F2 population of wheat. Australian Journal of Crop Science, 7(3): 407-413.
Nemeskéri E, Kovács-Nagy E and Sárdi É. 2017. Relationships between the biochemical and spectral traits of leaves and the productivity of apple trees in organic and integrated production systems. Biological Agriculture Horticulture, 33(2): 97-114. https://doi.org/10.1080/01448765.2016.1235992
Nielsen RB. 2016.Silk development and emergence in corn. Purdue University: Corny News Network.
Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y and Haque E. 2015. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 33(8): 862-869. https://doi.org/10.1038/nbt.3277
Ofori A, Ofori K, Obeng-Antwi K, Tengan K and Badu-Apraku B. 2015. Combining ability and heterosis estimate of extra-early quality protein maize (QPM) single cross hybrids. Journal of Plant Breeding and Crop Science, 7(4): 87-93. https://doi.org/10.5897/JPBCS2015.0496
Pandit M, Chakraborty M, Yadav RK, Prasad K, Sah RP and Soti U. 2019. Association study in different generations of Maize (Zea mays L.). Cogent Food and Agriculture, 5(1): 1-15. https://doi.org/10.1080/23311932.2019.1592062
Pavan R, Gangappa E, Ramesh S, Rao AM and Shailaja H. 2017. Detection of epistasis through triple test cross (TTC) analysis in maize (Zea mays L.). Journal of Applied and Natural Science, 9(4): 2496-2501. https://doi.org/10.31018/jans.v9i4.1560
Pessarakli M. 2019. Handbook of plant and crop stress. CRC press.
PourMohammad A, Toorchi M, Alavikia SS and Shakiba MR. 2014. Genetic analysis of yield and physiological traits in sunflower (Helianthus annuus L.) under irrigation and drought stress. Notulae Scientia Biologicae, 6(2): 207-213. https://doi.org/10.15835/nsb629173
Ribaut JM, Betran J, Monneveux P and Setter T. 2009. Drought tolerance in maize. In Handbook of maize: its biology, 311-344 (Eds J. Bennetzen and S. Hake). New York: Springer. https://doi.org/10.1007/978-0-387-79418-1_16
Saleem M, Shahzad K, Javid M and Ahmed A. 2002. Genetic analysis for various quantitative traits in maize (Zea mays L.) inbred lines. International Journal of Agriculture and Biology, 4(3): 379-382.
Satyanarayana E. 1995. Genetic analysis of flowering period in rabi maize (Zea mays L.). Journal of Agricultural Research, 29(3): 213-218.
Shahrokhi M, Khorasani S and Ebrahimi A. 2013. Study of genetic components in various maize (Zea mays L.) traits, using generation mean analysis method. International Journal of Agronomy and Plant Production, 4(3): 405-412
Sah R, Chakraborty M, Prasad K, Pandit M, Tudu V, Chakravarty M, Narayan S, Rana M and Moharana D. 2020. Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10(1): 1-15. https://doi.org/10.1038/s41598-020-59689-7
Sher H, Iqbal M and Khan K. 2012. Genetic analysis of maturity and flowering characteristics in maize (Zea mays L.). Asian Pacific Journal of Tropical Biomedicine, 2(8): 621-626. https://doi.org/10.1016/S2221-1691(12)60108-7
Sleper DA and Poehlman JM. 2006. Breeding field crops. Oxford, UK.: (5th Edition). Blackwell publishing. 432P.
Snedecor G and Cochran W. 1989. Statistical Methods, eight edition. Iowa State University Press, Ames, Iowa.
Sofi P, Rather A and Venkatesh S. 2006. Detection of epistasis by generation means analysis in maize hybrids. Pakistan Journal of Biological Sciences, 9(10): 1983-1986. https://doi.org/10.3923/pjbs.2006.1983.1986
Song H, Li Y, Zhou L, Xu Z and Zhou G. 2018. Maize leaf functional responses to drought episode and rewatering. Agricultural and Forest Meteorology, 249: 57-70. https://doi.org/10.1016/j.agrformet.2017.11.023
Tabassum M, Saleem M, Akbar M, Ashraf M and Mahmood N. 2007. Combining ability studies in maize under normal and water stress conditions. Journal of Agricultural Research, 45: 261-268.
Tezara W, Mitchell V, Driscoll S and Lawlor D. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401(6756): 914-917. https://doi.org/10.1038/44842
Tollenaar M, Ahmadzadeh A and Lee E. 2004. Physiological basis of heterosis for grain yield in maize. Crop Science, 44(6): 2086-2094. https://doi.org/10.2135/cropsci2004.2086
Van Gioi H, Mallikarjuna MG, Shikha M, Pooja B, Jha SK, Dash PK, Basappa AM, Gadag RN, Rao AR and Nepolean T. 2017. Variable level of dominance of candidate genes controlling drought functional traits in maize hybrids. Frontiers in Plant Science, 8: 940. https://doi.org/10.3389/fpls.2017.00940
Wang B, Liu C, Zhang D, He C, Zhang J and Li Z. 2019. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biology, 19(1): 335. https://doi.org/10.1186/s12870-019-1941-5
Wannows A, Sabbouh M and Al-Ahmad S. 2015. Generation mean analysis technique for determining genetic parameters for some quantitative traits in two maize hybrids (Zea mays L.). Jordan Journal of Agricultural Sciences, 11: 59-72.
Wolf D, Peternelli L and Hallauer A. 2000. Estimates of genetic variance in an F2 maize population. Journal of Heredity, 91(5): 384-391. https://doi.org/10.1093/jhered/91.5.384
Yuan Z, Cao Q, Zhang K, Ata-Ul-Karim ST, Tian Y, Zhu Y, Cao W and Liu X. 2016. Optimal Leaf Positions for SPAD Meter Measurement in Rice. Frontiers in Plant Science, 7: 719. https://doi.org/10.3389/fpls.2016.00719
Zhang X, Lei L, Lai J, Zhao H and Song W. 2018. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1): 68. https://doi.org/10.1186/s12870-018-1281-x