تجزیه ژنتیکی عملکرد و برخی صفات زراعی هیبرید ذرت تحت شرایط آبیاری کامل و تنش کم-آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

2 گروه به نژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه تبریز

3 گروه زیست‌ شناسی گیاهی، سلولی و ملکولی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

4 مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

5 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

6 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان‌ شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

7 بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان‌ شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

چکیده

صفات مختلف عملکرد دانه، فیزیولوژیکی و فنولوژیکی در هفت نسل ذرت با استفاده از روش تجزیه میانگین نسل‌ها تحت شرایط کنترل شده و تنش متوسط و شدید کم‌آبی مورد مطالعه قرار گرفت. ارزیابی نسل‌های حاصل از تلاقی دو لاین اینبرد ذرت شامل B73 و MO17، سینگل کراس 704 (به عنوان نسل F1) و نیز نسل‌های F2، BC1 ، BC2 و F3 در قالب طرح بلوک‌های کامل تصادفی با 20 تکرار طی دو سال زراعی 99-1398 در ایستگاه تحقیقاتی دانشکده کشاورزی دانشگاه تبریز انجام گرفت. نتایج تجزیه واریانس مرکب و مقایسات میانگین داده‌ها تحت سه رژیم آبیاری مختلف نشان داد که تنش کم‌آبی باعث کاهش معنی‌دار صفات عملکرد دانه و فیزیولوژیکی و افزایش معنی‌دار صفات فنولوژیکی گردید. تجزیه میانگین نسل‌ها سهم بالای اثرات ژنی غیر افزایشی را در کنترل ژنتیکی صفات مورد مطالعه نشان داد. این امر لزوم گزینش در نسل‌های در حال تفکیک پیشرفته و تولید ارقام هیبرید در ذرت را در جهت بهره‌برداری از واریانس غالبیت، نشان می‌دهد. همچنین، سهم بارز اثرات ژنی افزایشی در کنترل توارث تعداد روز تا کاکل‌دهی بیانگر این است که برای اصلاح این صفت و بهره‌گیری از واریانس افزایشی، گزینش در نسل‌های در حال تفرق اولیه و والدین اینبرد می‌تواند موثر باشد. بر اساس مجموعه صفات مورد بررسی لاین اینبرد MO17 و هیبرید SC704 در مقایسه با سایر لاین‌های مورد مطالعه، تحمل بالایی به تنش کم‌آبی (از مرحله 5 الی 6 برگی تا مرحله کاکل‌دهی) نشان داده و از پایداری عملکرد دانه برخوردار بودند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genetic Analysis of Yield and Some Agronomic Traits of Hybrid Maize Under Well- Irrigated and Water Deficit Conditions

نویسندگان [English]

  • Mozhgan Shirinpour 1
  • Saeid Aharizad 2
  • Ehsan Atazadeh 3
  • Ashkboos Amini 4
  • ali Asgheri 5
  • Ahmad Bybordi 6
  • Hassan Monirifar 7
1 Horticulture and Crops Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
2 Dept. of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran
3 Dept. of Plant, Cell and Molecular Biology, University of Tabriz, Tabriz, Iran.
4 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, AREEO, Karaj, Iran
5 Dept. of Production Engineering and Plant Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
6 Soil and Water Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
7 Horticulture and Crops Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
چکیده [English]

Grain yield, physiological and phenological traits in seven generations of maize using the generations mean analysis method under controlled conditions and, moderate and severe water deficit stress were studied. Evaluation of the generations drived from a cross between two inbred lines of maize including B73 and MO17, SC704 (as F1 generation), F2, BC1, BC2 and F3 using a randomized complete block design with 20 replications was conducted during two crop years of 2018-2019 at the Agricultural Research Station of University of Tabriz. The results of combined analysis of variance and mean comparisons of data under three different irrigation regimes showed that water deficit stress significantly reduced grain yield and physiological traits, and a significant increase in phenological traits. Generation mean analysis showed a high contribution of non-additive gene effects in the genetic control of the studied traits. This indicated that the necessity of selection in advanced segregating generations and the production of hybrid varieties in maize to take advantage of the dominance variance. Also, the significant contribution of additive gene effects in controlling the inheritance of the number of days to silk emergence indicated that selection in early segregating generations and inbred parents can be effective for breeding of this trait and taking advantage of additive variance. Based on the studied traits, inbred line MO17 and hybrid SC704 compared to other studied lines showed high tolerance to water deficit stress (from 5-6 leaf stage to silk emergence) and had the grain yield stability.

کلیدواژه‌ها [English]

  • Gene action
  • Generations mean analysis
  • Heritability
  • Maize generations
  • Water deficit stress
Adebayo M, Menkir A, Hearne S and Kolawole A. 2017. Gene action controlling normalized difference vegetation index in crosses of elite maize (Zea mays L.) inbred lines. Cereal Research Communications, 45(4): 675-686. https://doi.org/10.1556/0806.45.2017.043
Alam A, Ahmed S, Begum M and Sultan M. 2008. Heterosis and combining ability for grain yield and its contributing characters in maize. Bangladesh Journal of Agricultural Research, 33(3): 375-379. https://doi.org/10.3329/bjar.v33i3.1596
Ali S, Khan NU, Gul R, Naz I, Goher R, Ali N, Khan SA, Hussain I and Saeed M. 2018. Genetic analysis for earliness and yield traits in maize. Pakistan Journal of Botany, 50(4): 1395-1405.
Allen RG, Pereira LS, Raes D and Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome. 300(9): D05109.
Anjorin F, Adejumo S, Agboola L and Samuel Y. 2016. Proline, soluble sugar, leaf starch and relative water contents of four maize varieties in response to different watering regimes. Cercetari Agronomice in Moldova, 49(3): 51-62. https://repository.iuls.ro/xmlui/handle/20.500.12811/1182
Aslam M, Maqbool MA and Cengiz R. 2015. Drought stress in maize (Zea mays L.): Effects, resistance mechanisms, global achievements and biological strategies for improvement. Cham: Springer. https://doi.org/10.1007/978-3-319-25442-5
Atanaw A, Wali MC, Salimath P and Jagadeesha R. 2006. Combining ability, heterosis and per se performance in maize maturity components. Karnataka Journal of Agricultural Sciences, 19(2): 268-271.
Bolaños J and Edmeades G. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research, 48(1): 65-80. https://doi.org/10.1016/0378-4290(96)00036-6
Campos H, Cooper M, Habben J, Edmeades G and Schussler J. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Research, 90(1): 19-34. https://doi.org/10.1016/j.fcr.2004.07.003
Chen J, Xu W, Burke JJ and Xin Z. 2010. Role of phosphatidic acid in high temperature tolerance in maize. Crop Science, 50(6): 2506-2515. https://doi.org/10.2135/cropsci2009.12.0716
Chiuta NE and Mutengwa CS. 2020. Combining ability of quality protein maize inbred lines for yield and morpho-agronomic traits under optimum as well as combined drought and heat-stressed conditions. Agronomy, 10(2): 184. https://doi.org/10.3390/agronomy10020184
Connor DJ, Loomis RS and Cassman KG. 2011. Crop ecology: productivity and management in agricultural systems. New York, USA: Cambridge University Press.
Dai W, Girdthai T, Huang Z, Ketudat-Cairns M, Tang R and Wang S. 2016. Genetic analysis for anthocyanin and chlorophyll contents in rapeseed. Ciencia Rural, 46(5): 790-795. https://doi.org/10.1590/0103-8478cr20150564
Daryanto S, Wang L and Jacinthe PA. 2016. Global synthesis of drought effects on maize and wheat production. Plos One, 11(5): e0156362. https://doi.org/10.1371/journal.pone.0156362
Di Paolo E and Rinaldi M. 2008. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Research, 105(3): 202-210. https://doi.org/10.1016/j.fcr.2007.10.004
Dutta T, Neelapu NR, Wani SH and Challa S. 2018. Compatible solute engineering of crop plants for improved tolerance toward abiotic stresses. In: biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants, 221-254 (Ed W. SH). United States: Academic Press. https://doi.org/10.1016/B978-0-12-813066-7.00012-7
El-Sherif L, El-Eshmawiy K, El-Ghareeb N and Mohamed K. 2012. An analytical economic study of the corn crop at the world level. Australian Journal of Basic and Applied Sciences, 6(3): 734-740. http://www.ajbasweb.com/ajbas/2012/March/734-740.pdf
FAOSTAT. 2018. Food and Agricultural Organization Statistical Database. Rome, Italy: FAO. http://faostat.fao.org.
FAOSTAT. 2021. Food and Agricultural Organization Statistical Database. Rome, Italy: FAO. http://faostat.fao.org.
Farshadfar E. 1998. The application of quantitative genetics in plant breeding. Razi University Press. Kermanshah, Iran. (In persian). http://dx.doi.org/10.5539/jas.v4n9p1
Hallauer AR, Carena MJ and Miranda Filho Jd. 2010. Quantitative genetics in maize breeding. (3rd Edition). Springer-Verlag New York. 1-22p. https://doi.org/10.1007/978-1-4419-0766 -0
Hawkins TS, Gardiner ES and Comer GS. 2009. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal for Nature Conservation, 17(2): 123-127. https://doi.org/10.1016/j.jnc.2008.12.007
Hayman B and Mather K. 1955. The description of genic interactions in continuous variation. Biometrics, 11(1): 69-82. https://doi.org/10.2307/3001481
Hefny M. 2010. Genetic control of flowering traits, yield and its components in maize (Zea mays L.) at different sowing dates. Asian Journal of Crop Science, 2(4): 236-249. http://www.scialert.net/fulltext/?doi=ajcs.2010.236.249&org=11
Iqbal M, Khan K, Sher H and Al-Yemeni MN. 2011. Genotypic and phenotypic relationship between physiological and grain yield related traits in four maize (Zea mays L.) crosses of subtropical climate. Scientific Research and Essays, 6(13): 2864-2872. http://www.academicjournals.org/SRE/PDF/pdf2011/4Jul/Iqbal%20et%20al.pdf
Irshad ul Haq M, Kamal N, Khanum S, Siddique M and Arshadullah M. 2014. Generation mean analysis for flowering characteristics in maize (Zea mays L.). Persian Gulf Crop Protection, 3(1): 18-24.
Kahriman F, Egesel C, Cebeci R, Demir A and Bayraktar S. 2015. Genetic Analysis of Flowering in Maize based on Calendar and Thermal Time. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 25(2): 193-199. https://doi.org/10.29133/yyutbd.236302
Kumar TS, Reddy DM, Naik VS, Parveen SI and Subbaiah P. 2012. Gene action for yield and morpho-physiological traits in maize (Zea mays L.) inbred lines. Journal of Agricultural Science, 4(5): 13-16. http://dx.doi.org/10.5539/jas.v4n5p13
Lima VJd, Amaral Júnior ATd, Kamphorst SH, Bispo RB, Leite JT, Santos TdO, Schmitt KFM, Chaves MM, Oliveira UAd and Santos PHAD. 2019. Combined dominance and additive gene effects in trait inheritance of drought-stressed and full irrigated popcorn. Agronomy, 9(12): 782. https://doi.org/10.3390/agronomy9120782
Maazou ARS, Tu J, Qiu J and Liu Z. 2016. Breeding for drought tolerance in maize (Zea mays L.). American Journal of Plant Sciences, 7(14): 1858. http://dx.doi.org/10.4236/ajps.2016.714172
Mather K and Jinks JL. 1982. Biometrical genetics: the study of continuous variation. Springer. https://doi.org/10.1007/978.1.4899.3406.2
Moradi M. 2014. Genetic analysis to determine the nature and magnitude of genetic variances and heritability estimates in maize (Zea mays L.). International Journal of Agronomy and Agricultural Research, 5(5): 183-118.
Moradi M, Choukan R, Heravan EM and Bihamta MR. 2014. Genetic analysis of various morpho-physiological traits in Zea mays L. using graphical approach under normal and water stress conditions. Research on Crops, 15(1): 62-70. https://doi.org/10.5958/j.2348-7542.15.1.008
Naroui Rad MR, Kadir MA, Yusop MR, Jaafar HZ and Danaee M. 2013. Gene action for physiological parameters and use of relative water content (RWC) for selection of tolerant and high yield genotypes in F2 population of wheat. Australian Journal of Crop Science, 7(3): 407-413.
Nemeskéri E, Kovács-Nagy E and Sárdi É. 2017. Relationships between the biochemical and spectral traits of leaves and the productivity of apple trees in organic and integrated production systems. Biological Agriculture Horticulture, 33(2): 97-114. https://doi.org/10.1080/01448765.2016.1235992
Nielsen RB. 2016.Silk development and emergence in corn. Purdue University: Corny News Network.
Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y and Haque E. 2015. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 33(8): 862-869. https://doi.org/10.1038/nbt.3277
Ofori A, Ofori K, Obeng-Antwi K, Tengan K and Badu-Apraku B. 2015. Combining ability and heterosis estimate of extra-early quality protein maize (QPM) single cross hybrids. Journal of Plant Breeding and Crop Science, 7(4): 87-93. https://doi.org/10.5897/JPBCS2015.0496
Pandit M, Chakraborty M, Yadav RK, Prasad K, Sah RP and Soti U. 2019. Association study in different generations of Maize (Zea mays L.). Cogent Food and Agriculture, 5(1): 1-15. https://doi.org/10.1080/23311932.2019.1592062
Pavan R, Gangappa E, Ramesh S, Rao AM and Shailaja H. 2017. Detection of epistasis through triple test cross (TTC) analysis in maize (Zea mays L.). Journal of Applied and Natural Science, 9(4): 2496-2501. https://doi.org/10.31018/jans.v9i4.1560
Pessarakli M. 2019. Handbook of plant and crop stress. CRC press.
PourMohammad A, Toorchi M, Alavikia SS and Shakiba MR. 2014. Genetic analysis of yield and physiological traits in sunflower (Helianthus annuus L.) under irrigation and drought stress. Notulae Scientia Biologicae, 6(2): 207-213. https://doi.org/10.15835/nsb629173
Ribaut JM, Betran J, Monneveux P and Setter T. 2009. Drought tolerance in maize. In Handbook of maize: its biology, 311-344 (Eds J. Bennetzen and S. Hake). New York: Springer. https://doi.org/10.1007/978-0-387-79418-1_16
Saleem M, Shahzad K, Javid M and Ahmed A. 2002. Genetic analysis for various quantitative traits in maize (Zea mays L.) inbred lines. International Journal of Agriculture and Biology, 4(3): 379-382.
Satyanarayana E. 1995. Genetic analysis of flowering period in rabi maize (Zea mays L.). Journal of Agricultural Research, 29(3): 213-218.
Shahrokhi M, Khorasani S and Ebrahimi A. 2013. Study of genetic components in various maize (Zea mays L.) traits, using generation mean analysis method. International Journal of Agronomy and Plant Production, 4(3): 405-412
Sah R, Chakraborty M, Prasad K, Pandit M, Tudu V, Chakravarty M, Narayan S, Rana M and Moharana D. 2020. Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10(1): 1-15. https://doi.org/10.1038/s41598-020-59689-7
Sher H, Iqbal M and Khan K. 2012. Genetic analysis of maturity and flowering characteristics in maize (Zea mays L.). Asian Pacific Journal of Tropical Biomedicine, 2(8): 621-626. https://doi.org/10.1016/S2221-1691(12)60108-7
Sleper DA and Poehlman JM. 2006. Breeding field crops. Oxford, UK.: (5th Edition). Blackwell publishing. 432P.
Snedecor G and Cochran W. 1989. Statistical Methods, eight edition. Iowa State University Press, Ames, Iowa.
Sofi P, Rather A and Venkatesh S. 2006. Detection of epistasis by generation means analysis in maize hybrids. Pakistan Journal of Biological Sciences, 9(10): 1983-1986. https://doi.org/10.3923/pjbs.2006.1983.1986
Song H, Li Y, Zhou L, Xu Z and Zhou G. 2018. Maize leaf functional responses to drought episode and rewatering. Agricultural and Forest Meteorology, 249: 57-70. https://doi.org/10.1016/j.agrformet.2017.11.023
Tabassum M, Saleem M, Akbar M, Ashraf M and Mahmood N. 2007. Combining ability studies in maize under normal and water stress conditions. Journal of Agricultural Research, 45: 261-268.
Tezara W, Mitchell V, Driscoll S and Lawlor D. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401(6756): 914-917. https://doi.org/10.1038/44842
Tollenaar M, Ahmadzadeh A and Lee E. 2004. Physiological basis of heterosis for grain yield in maize. Crop Science, 44(6): 2086-2094. https://doi.org/10.2135/cropsci2004.2086
Van Gioi H, Mallikarjuna MG, Shikha M, Pooja B, Jha SK, Dash PK, Basappa AM, Gadag RN, Rao AR and Nepolean T. 2017. Variable level of dominance of candidate genes controlling drought functional traits in maize hybrids. Frontiers in Plant Science, 8: 940. https://doi.org/10.3389/fpls.2017.00940
Wang B, Liu C, Zhang D, He C, Zhang J and Li Z. 2019. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biology, 19(1): 335. https://doi.org/10.1186/s12870-019-1941-5
Wannows A, Sabbouh M and Al-Ahmad S. 2015. Generation mean analysis technique for determining genetic parameters for some quantitative traits in two maize hybrids (Zea mays L.). Jordan Journal of Agricultural Sciences, 11: 59-72.
Wolf D, Peternelli L and Hallauer A. 2000. Estimates of genetic variance in an F2 maize population. Journal of Heredity, 91(5): 384-391. https://doi.org/10.1093/jhered/91.5.384
Yuan Z, Cao Q, Zhang K, Ata-Ul-Karim ST, Tian Y, Zhu Y, Cao W and Liu X. 2016. Optimal Leaf Positions for SPAD Meter Measurement in Rice. Frontiers in Plant Science, 7: 719. https://doi.org/10.3389/fpls.2016.00719
Zhang X, Lei L, Lai J, Zhao H and Song W. 2018. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1): 68. https://doi.org/10.1186/s12870-018-1281-x