تجزیه پایداری عملکرد ژنوتیپ‌های امیدبخش گندم نان در شرایط شور با استفاده از تجزیه AMMI و GGE-Biplot

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار موسسه تحقیقات اصلاح و تهیه نهال وبذر، سازمان تحقیقات ، آموزش و ترویج کشاورزی، کرج، ایران

2 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

3 3- استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان یزد، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران

4 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمان، ایران

5 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

6 محقق مرکز تحقیقات کشاورزی و منابع طبیعی استان خراسان جنوبی

7 محقق مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی سیستان ، سازمان تحقیقات، آموزش و ترویج کشاورزی زابل، ایران

10.22034/saps.2023.54186.2948

چکیده

به منظور بررسـی اثر متقابل ژنوتیپ × محیط و شـناسایی ژنوتیپ‌های پایدار گندم در مناطق شور کشور، 18 ژنوتیپ امید بخش گندم به همراه دو رقم شـاهد گندم نارین و برزگر در پنج منطقه شامل بیرجند، کرمان، یزد، زابل و اصفهان در غالب طرح بلوک‌های کامل تصادفی با 3 تکرار و طی دو سال زراعی تحت شرایط تنش شوری ارزیابی و پس از تجزیه واریانس مرکب، برای شناسایی زنوتیپهای پایدار از روش چند متغیره AMMI و تجزیه GGE biplot استفاده شد. براسـاس دو مولفه اصـلی اول و دوم متد امی، ژنوتیپ‌های G19، G5 و تا حدودی G10 با کمترین مقدار اثر متقابل، و بر اساس تجزیه GGE biplot ژنوتیپ‌هایG18 و G10 جزء ژنوتیپ‌های برتر ازنظر عملکرد و پایداری عملکرد بودند. این تجزیه محیط‌ها را به سه گروه محیطی و ژنوتیپ‌ها را به پنج گروه ژنوتیپی تقسیم کرد. در گروه اول به ترتیب ژنوتیپ‌های G3، G18، G8، G9 و G10، در گروه دوم ژنوتیپ‌های G1 و G2 و در گروه سوم ژنوتیپ‌های G16، G17 و G7 دارای بیشترین عملکرد بودند. در مجموع بر اساس عملکرد دانه و پایداری عملکرد، ژنوتیپ‌های G18 و G3 بعنوان ژنوتیپ‌های برتر انتخاب شدند که می‌توانند بعنوان رقم جدید برای مناطق با شرایط آب وخاک شور کشور معرفی شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Yield stability Analysis of promising bread wheat genotypes under saline conditions using AMMI and GGE-Biplot analysis

نویسندگان [English]

  • Ashkboos Amini 1
  • Ali Akbar Asadi 2
  • Seyyed Tagi Tabatabaee 3
  • Seyed Zabihulla Ravari 4
  • Davood Amin Azarm 5
  • Elias Arazmjoo 6
  • Omid Poodineh 7
1 Associate Professor, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
2 Assistant Professor, Zanjan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran
3 Assistant Professor, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran
4 Assistant Professor, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
5 Assistant Professor, Esfahan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Esfahan, Iran
6 Researcher at the Agricultural and Natural Resources Research Center of Southern Khorasan
7 Crop and Horticultural Science Research Department, Zabol Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Zabol, iran
چکیده [English]

Abstract
Baclgrpimd & Objectives: This study was carried out in order to investigate the interaction effect of genotype × environment and to identify the stable genotypes of wheat in the saline areas of the country.
Materials and Methods: 18 selected genotypes from wheat yield comparison experiments along with two control varieties, Narin and Barzegar, in five regions including Birjand, Kerman, Yazd, Zabul and Isfahan on bais randomized complete block design with 3 replications and during two years crop (2019-2021) was evaluated. For grain yield, combined analyses of variance were performed and stability analysis was performed using AMMI multivariate method and GGE biplot analysis in order to identify genotypes that have high yield potential, high yield stability and general compatibility.
 
Results: Based on the first and second main components of AMMI stability analysis, G19, G5 and to some extent G10 genotypes with the least amount of interaction were recognized as stable genotypes. Based on GGE biplot analysis, G18 and G10 genotypes were among the superior genotypes in terms of yield and yield stability. Also, G18 and G3 genotypes were located at a short distance from the ideal genotype, respectively. This analysis divided the environments into three environmental groups and the genotypes into five genotypic groups. Yazd 1 and 2, Kerman 1 and 2, Birjand 2 and Zabul 2 were in the first group, Isfahan 1 and 2 and Birjand 1 were in the second group and Zabul 1 were in the third group. In the first group, G3, G18, G8, G9, and G10, in the second group, G1 and G2, and in the third group, G16, G17, and G7 genotypes had the highest yield. Therefore, it is possible to introduce G3, G8 and G18 genotypes in Yazd and Kerman regions and G1 and G2 genotypes in Isfahan region as genotypes with private adaptation.
 
Conclusion: Considering grain yield and yield stability, G18 (Elvira/Milan//Arg) and G3 (DH-209-1557 F3,Vee"s"/Nac//1-66-22/3/Dove"s"/Buc"s"//2*Darab) with a yield of 4.89 and 5.3 tons per hectare respectively, were selected as superior genotypes that can be introduced as new cultivars for regions with saline conditions in the country.
 

کلیدواژه‌ها [English]

  • AMMI
  • Genotype×Environment Interaction Effect
  • Salinity
  • Yield Stability
Abyar S, Navabpour S, Karimizadeh R, Gholizadeh A, Nasrollahnejad ghomi AA, and Kiani G. 2022. Grain yield stability evaluation of bread wheat genotypes using AMMI multivariate methods. Journal of Crop Production and Processing, 12(1): 119-132. (In Persian).doi: ‎ 10.47176/jcpp.12.1.36253
Adugna A. 2010. Assessment of yield stability in sorghum. African Journal of Crop Science, 15(2): 83-92. DOI:10.4314/acsj.v15i2.54421.
Aghaee-Sarbarzeh M, Dastfal M, Farzadi H, Andarzian B, Shahbazpour-Shahbazi A, Bahari M and Rostami H. 2012. Evaluation of durum wheat genotypes for yield and yield stability in warm and dry areas of Iran. Seed and Plant Improvement Journal, 2: 315-325. (In Persian). doi:‎ 10.29252/abj.21.2.127
Ahakpaz F, Majidi Hervan E, roustaii M, Bihamta M, mohammadi S. 2023. Comprehensive stability analysis of wheat genotypes through multi-environmental trials. Journal of Agricultural Sciences, 29(1): 317-334.  https://doi.org/10.15832/ankutbd.999060
Ahmadi J, Pour-Aboughadareh A, Fabriki Ourang S, Mehrabi AA. and Siddique KHM. 2018. Screening wild progenitors of wheat for salinity stress at early stages of plant growth: insight into potential sources of variability for salinity adaptation in wheat. Crop and Pasture Science, 69(7): 649-658. DOI:10.1071/CP17418
Al-Sayaydeh R, Shtaya MJ, Qubbaj T, Al-Rifaee MK, Alabdallah MA, Migdadi O, Gammoh IA, Al-Abdallat AM. 2023. Performance and stability analysis of selected durum wheat genotypes differing in their kernel characteristics. Plants, 12(14): 1-18. DOI: 10.3390/plants12142664
Amini A, Asadi AA, Chaichi M, Ezt-Ahmadi M, Ghasemi Kalkhoran M, Eivazi AR, Hosseinibay SK, Salehi P, Babaei T, Godsi M and Mirfakhraee N. 2023. Investigating the stability of promising bread wheat genotypes in cold climate using AMMI and GGE biplot analysis. Iranian Journal of Field Crop Science, 54(3): 119-134. (In Persian). DOI: http//doi.org/10.22059/ijfcs.2023.348569.654940
Amini A, Tabatabaee MT, Moghaddam HA, Ravari Z, Amin Azarm D. and Tajali H. 2021. Evaluation of grain yield and its stability in bread wheat genotypes in saline regions of Iran. Iranian Journal of Field Crop Science, 51(4): 191-202. (In Persian). DOI: 10.22059/ijfcs.2020.290344.654649
Annicchiarico P, Harzic N and Carroni AM. 2010. Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Research, 119(1): 114-124. https://doi.org/10.1016/j.fcr.2010.06.022
Becker HC and Leon J. 1988. Stability analysis in plant breeding. Plant Breeding, 101: 1-25. https://doi.org/10.1111/j.1439-0523.1988.tb00261.x
Blanche SB and Myers GO. 2006. Identifying discriminating locations for cultivar selection in Louisiana. Crop Science, 46: 946-949.https://doi.org/10.2135/cropsci2005.0279
Dehghani H, Ebadi A and Yousefi A. 2006. Biplot analysis of genotype by environment interaction for barley yield in Iran. Agronomy Journal, 98: 388-393. DOI:10.2134/agronj2004.0310
Ehyaei M, Mostafavi K, Bakhtiar F and Mohammadi A. 2022. Yield stability of bread wheat genotypes using AMMI and GGE biplot analysis. Cereal Research, 12(2): 147-165 (In Persian). doi: 10.22124/CR.2023.23333.1746
Elakhdar A, Kumamaru T, Smith KP, Brueggeman RS, Capo-chichi LJA and Solanki S. 2017. Genotype by environment interactions (GEIs) for barley grain yield under salt stress condition. Journal of Crop Science and Biotechnology, 20(3): 193-204. DOI: 10.1007/s12892-017-0016-0
Esmailzadeh Moghaddam M, Zakizadeh M, Akbarimoghaddam H, Abedini Esfahlani M, Sayahfar M, Nikzad AR, Tabib-Ghafari SM and Lotfali Aeineh GA. 2011. Genotype × environment interaction and stability of grain yield of bread wheat genotypes in dry and warm areas of Iran. Seed and Plant Improvement Journal, 27(2): 257-273. (In Persian). DOI: 10.22092/spij.2017.111062
Fan XM, Kang MS, Chen H, Zhang Y, Tan J and Xu C. 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal, 99: 220-228. https://doi.org/10.2134/agronj2006.0144
Farshadfar E, Rashidi M, Jowkar MM and Zali H. 2012. GGE Biplot analysis of genotype × environment interaction in chickpea genotypes. European Journal of Experimental Biology, 3(1):417-423. ISSN: 2248 –9215 CODEN (USA): EJEBAU
Fattahi F and Yossefi A. 2006. Evaluation of yield stability of barley genotypes (Hordeum
vulgare L.) using repeatable stability parameters and pattern analysis of AMMI model. Iranian
Journal of Agricultural Science, 37: 317-326. (In Persian). https://www.researchgate.net/publication/3122188791470.
Gauch HG and Zobel RW. 1996. AMMI analysis of yield trials. P. 85-122. In: Kang MS, Gauch HG. (eds.) Genotype by environment interaction, 1-14 pp., CRC press. Boca Raton. http://dx.doi.org/10.1201/9781420049374.ch4
Gautam A, Sai Prasad SV, Jajoo A and Bassi FM. 2023. Evaluation of Indian durum wheat genotypes for yield and quality traits using additive main-effects and multiplicative interaction (AMMI) biplot analysis under terminal heat stress conditions. Crop Breeding, Genetics and Genomics, 5(3): 1-23. https://doi.org/10.20900/cbgg20230004
Ghaedrahmati M, Hosseinpour T and Ahmadi A. 2017. Study of grain yield stability of durum wheat genotypes using AMMI. Journal of Crop Breeding, 9: 67-75. (In Persian). doi: ‎ 10.29252/jcb.9.23.67
Ghazvini H, Pour-Aboughadareh A, Sharifalhosseini M, Razavi SA, Mohammadi S,
GhasemiKalkhoran, M, FathiHafshejani A and. Khakizadeh Gh. 2018. Phenotypic stability
analysis of barley promising lines in the cold regions of Iran. Crop Breeding Journal
8 (1 & 2): 17-29. (In Persian). DOI: 10.22092/cbj.2019.127226.1037
Gupta, V, Mehta G, Kumar S, Ramadas S, Tiwari R, Singh G and Sharma P. 2023. AMMI and GGE biplot analysis of yield under terminal heat tolerance in wheat. Molecular Biology Reports, 50: 3459-3467. DOI: 10.1007/s11033-023-08298-4
Hassanpanah D. 2011. Analysis of G×E interaction using the additive main effects and multiplicative interaction (AMMI) in potato cultivars. African Journal of Biotechnology, 10(2): 154-158. DOI: 10.5897/AJB09.633
Jeberson MS, Kant L, Kishore N, Rana V, Walia DP and Singh D. 2017. AMMI and GGE biplot analysis of yield stability and adaptability of elite genotypes of bread wheat (Triticum aestivum L.) for northern hill zone of India, International Journal of Bio-resource and Stress Management, 8: 635 - 641. DOI:10.23910/IJBSM/2017.8.5.1838
Kamkar, B., Kafi, M. and Nassiri Mahallati, M. 2004. Determination of the most sensitive developmental period of wheat (Triticum aestivum) to salt stress to optimize saline water utilization. 4thInternational Crop Science Congress. Brisbane, Australia.
Karimzadeh R, Hosseinpour T, Sharifi P, Alt Jafarby J, Shahbazi Homonlo K and Keshavarzi K. 2020. Grain yield stability of durum wheat genotypes in semi-warm rainfed regions, Cereal Research, 10(2):135-147 (In Persian). DOI: 10.22124/cr.2020.16274.1589
Karimizadeh R, Hosseinpour T, Alt Jafarby J, Shahbazi Homonlo K, Armion M and Sharifi P. 2020. Stability analysis of durum wheat genotypes by GGE Biplot method. Journal of Crop Breeding, 2(35): 1-17. (In Persian).DOI:  10.52547/jcb.12.35.1
Kendal E, Karaman M, Tekdal S and Dogan S. 2019. Analysis of promising barley (Hordeum vulgare L.) lines performance by AMMI and GGE biplot in multiple traits and environment. Applied ecology and environmental research, 17(2):5219-5233. DOI:10.15666/aeer/1702_52195233
Khorsandi F and Hasheminezhad Y. 2019. Agriculture in saline conditions. National Salinity Center, Ministery of Agriculture-Jahad, Agricultural Research, Education and Extension Organization (AREEO). DOI: 10.22059/ijfcs.2020.290344.654649
Mahdavi AM, Babaeian Jelodar N, Farshadfar E and Bagheri N. 2022. Study of grain yield stability of bread wheat genotypes using non-parametric method and GGE biplot. Environmental Stresses in Crop Sciences, 15(2): 287-298. (In Persian).DOI: 20.1001.1.22287604.1401.15.2.1.7
Moayedi AA, Najafi Mirak T, Taherian M, Sasani S and Amin azarm D. 2020.Evaluation of grain yield stability of durum wheat (Triticum turgidum L. var. durum) promising lines in moderate regions of Iran, Journal of Agroecology, 12(2): 345-358. (In Persian).DOI: 10.22067/jag.v12i2.85729
Mohammadi R, Armion M, Sadeghzadeh B, Golkari S, Khalilzadeh G, Ahmadi H, Abedi-Asl G and Eskandari M. 2016. Assessment of grain yield stability and adaptability of rainfed durum wheat breeding lines. Applied Field Crops Research, 29(4): 25-42. (In Persian).DOI: 10.22092/aj.2017.102141.1037
Mohammadi R, Farshadfar E and Amri A. 2015. Interpreting genotype environment interactions for grain yield of rainfed durum wheat in Iran. The Crop Journal, 3(6): 526-535. https://doi.org/10.1016/j.cj.2015.08.003
Mohammadi R, Armion M, Zadhassan E and Eskandari M. 2014. Analysis of genotype and environment interaction for grain yield in rain-fed durum wheat. Journal of Dryland Agriculture of Iran, 1(4): 23-32. (In Persian). https://doi.org/10.22092/idaj.2014.100185
Mohammadi R and Amri A. 2013. Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica, 192(2): 227-249. DOI:10.1007/s10681-012-0839-1
Mohammadi R, Armion M, Zadhassan E, Ahmadi MM and Sadeghzadeh Ahari D. 2012. Genotype × Environment interaction for grain yield of rainfed durum wheat using the GGE bipot Model. Seed and Plant International Journal, 3: 503-518. (In Persian). DOI:  10.22092/spij.2017.111122
Mohammadi R, Haghparast R, Amri A and Ceccarelli S. 2010. Yield stability of rainfed durum wheat and GGE biplot analysis of multi environment trials. Crop and Pasture Science, 61: 92-101. DOI:10.1071/CP09151
Mortazavian SMM, Nikkhah HR, Hassani FA, Sharif-al-Hosseini M, Taheri M and Mahlooji M. 2014. GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran, Journal of Agricultural Science and Technology, 16: 609-622. DOI: 20.1001.1.16807073.2014.16.3.5.3
Nachshon U. 2018. Cropland soil salinization and associated hydrology: Trends, processes and examples. Water, 10: 1030.  https://doi.org/10.3390/w10081030
Najafi Mirak T, Agaee Sarbarzeh M, Moayedi A, Kaffashi A and Sayahfar M. 2021. Yield stability analysis of durum wheat genotypes using AMMI method, Journal of Agricultural Science and Sustainable Production, 31(2): 17-28 (In Persian).DOI: 10.22034/saps.2021.13087
Najafi Mirak T, Moayedi AA, Sasani S and Ghandi A. 2019. Evaluation of adaptation and grain yield stability of durum wheat (Triticum turgidum L.) genotypes in temperate agro-climate zone of Iran. Iranian Journal of Crop Sciences, 21(2): 127-138 (In Persian). DOI:  10.29252/abj.21.2.127
Olivoto T. 2019. Metan: multi environment trials analysis. R package version 1.1.0. https://github.com/TiagoOlivoto/metan (accessed 24 June 2019). DOI:10.1111/2041-210x.13384
Omrani A, Omrani S, Khodarahmi M, Shojaei SH, Illés Á, Bojtor C, Mousavi SMN and Nagy J. 2022. Evaluation of grain yield stability in some selected wheat genotypes using AMMI and GGE biplot methods. Agronomy, 12(5): 1-14. DOI:10.3390/agronomy12051130
Omrani S, Naji AM and Esmaeilzadeh Moghaddam M. 2017. Yield stability analysis of promising bread wheat lines in southern warm and dry agro climatic zone of Iran using GGE biplot Model, journal of Crop Breeding, 9(23): 157-165(In Persian).DOI:  10.29252/jcb.9.23.157
Perkinz JM and Jinks JL. 1971. Environments and genotype environment components of variability III. Multiple lines and crosses. Heredity, 23: 339-356. https://doi.org/10.1038/hdy.1971.67
Purchase JL, Hatting H and Van Deventer CS. 2000. Genotype × environment interaction of winter wheat in south Africa: II. Stability analysis of yield performance. South Africa journal of plant and soil, 17(3): 101-107. DOI:10.1080/02571862.2000.10634878
Qureshi AS, Qadir M, Heydari N, Turral H and Javadi A. 2007. A review of management strategies for salt- rone land and water recourses in Iran. Colombo, Sri Lanka: International Water Management Institute. 30p. (IWMI Working paper 125). https://doi.org/10.3910/2009.303
Ram K, Munjal R, Kesh H, Suresh and Kumari A. 2020. AMMI and GGE Biplot analysis for yield stability of wheat genotypes under drought and high temperature stress. International Journal of Current Microbiology and Applied Sciences, 9(5): 377-389. DOI:10.20546/ijcmas.2020.905.043
Rodriguez M, Rau D and Papa R. 2007. Genotype by environment interactions in barley (Hordeum vulgare L.): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica, 163(2): 231-247. DOI:10.1007/s10681-007-9635-8
Sadiyah H and Hadi AF. 2016. AMMI model for yield estimation in multienvironment trials: A comparison to BLUP. Agriculture and Agricultural Science Procedia, 9: 163-169. DOI:10.1016/j.aaspro.2016.02.113
Shahmohammadi M, Dehghani H and Yossefi A. 2004. Additive main effect and multiplicative interaction analysis (AMMI) in barley (Hordeum voulgare L.) genotypes. Seed and Plant, 20(4): 405-416. (In Persian). DOI:10.1501/Tarimbil_0000001292
Sharifi P. 2020. Application of multivariate analysis methods in agricultural sciences. Rasht Branch, Islamic Azad University press. 308 p.
Vaezi B, Pour-Aboughadareh A, Mohammadi R, Armion M, Mehraban A, Hossein-Pour T and Dorii M. 2017. GGE biplot and AMMI analysis of barley yield performance in Iran. Cereal Research Communications, 45(3): 500-511. (In Persian). https://doi.org/10.1556/0806.45.2017.019
Wang ZQ, Liu YX, Shi HR, Mo HJ, Wu FK and Lin Y. 2016. Identification and validation of novel low-tiller number QTL in common wheat. Theoretical and Applied Genetics, 129: 603–612. t https://doi.org/10.1007/s00122-023-04277-2
Yan W and Tinker NA. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86: 623-645. DOI:10.4141/P05-169
Yan W and Kang MS. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press: Boca Raton FL, Gauch HG and Zobel RW. 1997. Identifying mega-environments and targeting genotypes. Crop Science, 37: 311-326. DOI:10.1201/9781420040371
Yan W and Hunt LA. 2002a. Biplot analysis of diallel data. Crop Science, 42: 21-30. DOI:10.2135/cropsci2002.0021
Yan W. 2002. Singular-value partitioning in biplot analysis of multi-environment
trial data. Agronomy Journal, 94: 990-996. DOI:10.2134/agronj2002.9900
Yan W, Cornelius PL, Crossa J and Hunt LA. 2001b. Two types of GGE biplots for analyzing multi environment trial data. Crop Science, 41: 656-663. DOI:10.2135/cropsci2001.413656x
Yan W, Hunt LA, Sheng Q and Szlavnics Z. 2000. Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Science, 40: 596-605. DOI:10.2135/cropsci2000.403597x