ارزیابی و مقایسه کارایی و پایداری تولید سویا در شهرستان‌های آق‌قلا و علی‌آباد کتول بر پایه روش تحلیل امرژی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت دانشگاه زابل

2 دانشگاه زابل - دانشکده کشاورزی - گروه زراعت

3 گروه آموزشی زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

10.22034/saps.2023.57633.3082

چکیده

چکیده
اهداف: این تحقیق با هدف ارزیابی و مقایسه کارایی و پایداری بوم‌نظام‌های زراعی سویا (Glycine max L.) در شهرستان‌های آق‌قلا و علی‌آباد کتول، انجام شد.
 
مواد و روش‌ها: مطالعه، در استان گلستان در سال زراعی 99-1398 و توسط پرسش‌نامه و مصاحبه با کشاورزان و مدیران مزارع انجام شد. در ابتدا منابع به چهار گروه محیطی تجدیدپذیر، محیطی تجدیدناپذیر، بازاری تجدیدپذیر و بازاری تجدیدناپذیر تقسیم شد. پس از تعیین ورودی‌ها و خروجی مزارع و معادل امرژی آنها، شاخص‌های امرژی ارزیابی شد.
 
یافته­ها: ورودی امرژی کل به بوم‎نظام‎های زراعی سویا در آق‌قلا و علی‌آباد کتول به‌ترتیب 1016×21/6 و 1016×42/6 امژول خورشیدی در هکتار بود که نشان دهنده تراکم بیشتر امرژی در تولید سویا در شهرستان علی‌آباد کتول در مقایسه با آق‌قلا است. در هر دو بوم‌نظام زراعی، وابستگی به ورودی‌های محیطی تجدیدناپذیر، بسیار بیشتر از ورودی‌های محیطی تجدیدپذیر، بازاری تجدیدپذیر و بازاری تجدیدناپذیر بود که به دلیل سهم زیاد آب زیرزمینی و فرسایش خاک از ورودی امرژی کل بود.
 
نتیجه‌گیری: کارآیی مصرف منابع، کارآیی اقتصادی، پایداری محیطی و پایداری اقتصادی در بوم‌نظام زراعی سویا در شهرستان آق‌قلا بیشتر از علی‎آباد کتول بود. اجرای راهکار‌های توصیه شده برای کاهش مصرف منابع تجدیدناپذیر در تامین ورودی‌های خریداری شده، در کنار آگاهی، آموزش و تشویق کشاورزان در این زمینه، در افزایش کارایی و پایداری محیطی و اقتصادی در بوم‌نظام‌های زراعی موثر است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation and Comparison of the Efficiency and Sustainability of soybean Production in Aq Qala and Aliabad-e-Katul counties based on the Emergy Analysis Technique

نویسندگان [English]

  • Ebrahim Asdkhani 1
  • Mahmood Ramroudi 2
  • Mohamamd Reza Asgharipour 3
  • Hamidreza shahhoseini 1
1 Agriculture Department University of Zabol
2 Associated Prof. Dept. of Agronomy, University of Zabol
3 Department of Agronomy, College of Agriculture, University of Zabol, Zabol, Iran
چکیده [English]

Abstract
Background and Objective: The purpose of this study was to evaluate and compare the efficiency and sustainability of soybean (Glycine max L.) agricultural ecosystems in the counties of Aq Qala and Aliabad-e-Katul.
 Materials and Methods: The study was conducted in 2018-2019. First, resources were divided into four categories: renewable environmental resources, nonrenewable environmental resources, purchased renewable resources and purchased nonrenewable resources. After determining the inputs and outputs of farms and their emergy equivalent, emergy indices were evaluated. In this study, production systems of soybean were evaluated using emergy indices in counties of Aq Qala and Aliabad-e-Katul (Golestan province), by questionnaires and face to face interview with farmers and managers of farms.  Results: The total emergy input to soybean farming ecosystems in Aq Qala and Aliabad-e-Katul was 6.21E+16 and 6.42E+16 sej ha-1, respectively. In both agricultural ecosystems, dependence on non-renewable environmental inputs was much more than renewable environmental, renewable purchased and non-renewable purchased inputs, which was due to the large contribution of groundwater and soil erosion from the total emergy input. Conclusion: Soybean production system in Aq Qala was more favorable in terms of resources use efficiency and environmental and economic sustainability than soybean production system in Aliabad-e-Katul. Implementation of the recommended solutions to reduce the consumption of non-renewable resources in providing purchased inputs, along with awareness, education and encouragement of farmers in this field, is effective in increasing efficiency and environmental and economic sustainability in agricultural ecosystems. 
 

کلیدواژه‌ها [English]

  • Emergy input
  • Environmental load
  • Groundwater
  • Soil erosion
  • Yield
Ali M, Marvuglia A, Geng Y, Robins D, Pan H, Song X, Yu Z and Sun H. 2019. Accounting emergy-based sustainability of crops production in India and Pakistan over first decade of the 21st century. Journal of Cleaner Production, 207: 111-122. https://doi.org/10.1016/j.jclepro.2018.09.236
Alimagham SM, Soltani A, Zeinali E and Kazemi H. 2017. Energy flow analysis and estimation of greenhouse gases (GHG) emissions in different scenarios of soybean production (Case study: Gorgan region, Iran). Journal of Cleaner Production, 149: 621-628. https://doi.org/10.1016/j.jclepro.2017.02.118
Amiri Z, Asgharipour MR, Campbell DE and Aghapoor Sabaghi M. 2020. Comparison of the sustainability of mechanized and traditional rapeseed production systems using an emergy-based production function: A case study in Lorestan Province, Iran. Journal of Cleaner Production, 258: 120891. https://doi.org/10.1016/j.jclepro.2020.120891
Amiri Z, Asgharipour MR, Campbell DE and Armin M. 2019. A sustainability analysis of two rapeseed farming ecosystems in Khorramabad, Iran, based on emergy and economic analyses. Journal of Cleaner Production, 226: 1051-1066. https://doi.org/10.1016/j.jclepro.2019.04.091
Amiri Z, Asgharipour MR, Campbell DE, Azizi K, Kakolvand E and Hassani Moghadam E. 2021. Conservation agriculture, a selective model based on emergy analysis for sustainable production of shallot as a medicinal-industrial plant. Journal of Cleaner Production, 292: 126000. DOI:10.1016/j.jclepro.2021.126000
Asgharipour MR, Amiri Z and Campbell DE. 2020. Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics. Ecological Modelling 424: 109021. https://doi.org/10.1016/j.ecolmodel.2020.109021
Asgharipour MR, Shahgholi H, Campbell DE, Khamari I and Ghadiri A. 2019. Comparison of the sustainability of bean production systems based on emergy and economic analyses. Environmental Monitoring and Assessment, 191(2): 1-21. https://doi.org/10.1007/s10661-018-7123-3.
Brandt-Williams SL. 2002. Handbook of Emergy Evaluation: Folio #4 Emergy of Florida Agriculture. Center for Environmental Policy, Univercity of Florida, Gainesville, FL, USA.
Brown MT, Campbell DE, De Vilbiss C and Ulgiati S. 2016. The geobiosphere emergy baseline: A synthesis. Ecological Modelling, 339, 92-95. http://dx.doi.org/10.1016/j.ecolmodel.2016.03.018
Brown MT and Ulgiati S. 2004. Energy quality, emergy, and transformity: H.T. Odum,s contributions to quantifying and understanding systems. Ecological Modelling, 178: 201-213. doi:10.1016/j.ecolmodel.2004.03.002
Campbell DE, Brandt-Williams SL and Meisch MEA. 2005. Environmental accounting using Emergy: Evaluation of the state of West Virginia. EPA/600/R-02/011. USEPA, Office of research and Development, Washigton, DC, P. 116.
Cochran J. 2003. Patterns of sustainable agriculture adoption/non-adoption in Panama a thesis submitted to McGill University. McGill University, Montreal, Canad: 1-114.
Cuadra M and Rydberg T. 2006. Emergy evaluation on the production, processing and export of coffee in Nicaragua. Ecological Modelling, 196, 421-433. https://doi.org/10.1016/j.ecolmodel.2006.02.010
Elsoragaby S, Yahya A, Mahadi MR, Mat Nawi N and Mairghany M. 2019. Energy utilization in major crop cultivation. Energy, 173, 1285-1303. https://doi.org/10.1016/j.energy.2019.01.142
Hu S, Mo XG, Lin ZH and Qiu JX. 2010. Emergy assessment of a wheat-maize rotation system with different water assignments in the North China Plain. Environmental Management, 46: 643-657. DOI: 10.1007/s00267-010-9543-x
Kaur N, Kumar Vashist K and Brar AS. 2021. Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes. Energy, 216: 119286. https://doi.org/10.1016/j.energy.2020.119286
Kumaraswamy S. 2012. Sustainability issues in agro-ecology: Socio-ecological perspective. Agricultural Sciences, 3(2): 153-169. DOI:10.4236/as.2012.32018
Lan SF, Qin P and Lu HF. 2002. Emergy Assessment of Ecological Systems. Chemical Industry Press, Beijing, China, pp. 406–412 75 and 76.
Lombardi GV, Parrini S, Atzori R, Stefani G, Romano D, Gastaldi M and Liu G. 2021. Sustainable agriculture, food security and diet diversity. The case study of Tuscany, Italy. Ecological Modelling, 458: 109702. https://doi.org/10.1016/j.ecolmodel.2021.109702
Lotfi S, Kazemi H, Kamkar B and Shahhoseini HR. 2022. Evaluating the Sustainability Indices for Rapeseed (Brassica napus L.) Production Systems Using Emergy Analysis (Case Study: Kalaleh County, Golestan Province). Journal of Agroecology, (In Persian). DOI: 10.22067/agry.2022.72035.1063
Lu H, Yuan Y, Campbell DE, Qin P and Cui L. 2014. Integated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water. Ecological Engineering, 69: 244-254. http://dx.doi.org/10.1016/j.ecoleng.2014.04.024
Lu H, Bai Y, Ren H and Campbell DE. 2010. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: Implications for agricultural policy in China. Journal of Environmental Management, 91: 2727-2735. doi:10.1016/j.jenvman.2010.07.025
Lu HF, Kang WL, Campbell DE, Ren H, Tand YW, Fengd RX, Luo JT and Chen FP. 2009. Emergy and economic evaluations of four fruit production systems on reclaimed wetlands surrounding the Pearl River Estuary, China. Ecological Engineering, 35: 1743-1757. doi:10.1016/j.ecoleng.2009.08.001
Martin JF, Diemont SAW, Powell E, Stanton M and Levy-Tacher S. 2006. Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management. Agriculture, Ecosystems and Environment, 115: 128-140. doi:10.1016/j.agee.2005.12.016
Montoya D, Gaba S, de Mazancourt C, Bretagnolle V and Loreau M. 2020. Reconciling biodiversity conservation, food production and farmers,demand in agricultural landscapes. Ecological Modelling, 416: 108889. https://doi.org/10.1016/j.ecolmodel.2019.108889
Mousavi-Avval SH, Rafiee S, Jafari A and Mohammadi A. 2011. Energy flow modeling and sensitivity analysis of inputs for canola production in Iran. Journal of Cleaner Production, 19: 1464-1470. https://doi.org/10.1016/j.jclepro.2011.04.013
Odum HT. 1996. Environmental accounting: Emergy and Environmental Decision Making. John Wiley & Sons, New York. USA. 384 pp.
Odum HT. 2000. Handbook of Emergy Evaluation. A Compendium of Data for Emergy Computation Folio #2 Emergy global processes. Center of Environmental Policy, University of Florida, Gainesville. 28 pp.
Patterson M, McDonald G and Hardy D. 2017. Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting. Ecological Modelling, 362: 19-36. https://doi.org/10.1016/j.ecolmodel.2017.07.022
Quintero-Angel M and Gonzalez-Acevedo A. 2018. Tendencies and challenges for the assessment of agricultural sustainability. Agriculture, Ecosystems and Environment, 254, 273-281. https://doi.org/10.1016/j.agee.2017.11.030
Shahhoseini HR, Ramroudi M and Kazemi H. 2020. Evaluating the Resources Use Efficiency and Sustainability Indices for Two Potato Production Systems using Emergy Analysis (Case Study: Gorgan county). Journal of Agroecology, 12(1): 127-142. (In Persian). Doi:10.22067/jag.v12i1.81189
Singh Jatav S and Naik K. 2023. Measuring the agricultural sustainability of India: An application of pressure-state-response model. Regional Sustainability, 4(3): 218-234.
Yasini H, Ghanbari SA, Asgharipour MR and Seyedabadi E. 2020. Evaluating of Sustainability in Wheat, Onion and Garlic Cropping Systems by Joint Use of Emergy and Economic Accounting. Journal of Agricultural Science and Sustainable Production, 30(2): 269-288. (In Persian).
Zhai X, Huang D, Tang S, Li S, Guo J, Yang Y, Liu H, Li J and Wang K. 2017. The emergy of metabolism in different ecosystems under the same environmental conditions in the agro-pastoral ecotone of northern China. Ecological Indicators, 74: 198-204. http://dx.doi.org/10.1016/j.ecolind.2016.11.028