مطالعه دگر(نا)سازگاری و معرفی بهترین والد گرده‌زا در چهار ژنوتیپ‌ امیدبخش بادام برای دستیابی به تولید محصول پایدار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

2 دانشیار بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

3 محقق، بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

10.22034/saps.2023.55545.3005

چکیده

چکیده         
اهداف: این مطالعه به­منظور تشخیص دگر (نا)سازگاری دانه گرده هفت رقم تجاری در تلاقی با چهار ژنوتیپ امیدبخش بادام (Prunus dulcis Mill.) و انتخاب بهترین رقم گرده­زا برای تضمین میوه­بندی و تولید پایدار محصول انجام گردید.  
 
مواد و روش­ها: درصد میوه­بندی اولیه و نهایی ژنوتیپ­های امیدبخش بادام پس از گرده­افشانی کنترل شده با ارقام گرده­زا در شرایط باغی در ایستگاه تحقیقات باغبانی سهند (آذربایجان شرقی) طی دو سال متوالی ارزیابی گردید. همچنین رشد لوله گرده ارقام گرده­زا درون مادگی گل ژنوتیپ­های گرده­گیرنده به کمک میکروسکوپ فلئورسنت ردیابی شد. مشاهده حداقل یک لوله گرده در حال رشد درون تخمدان نشانه سازگاری و توقف رشد لوله گرده درون خامه نشانه ناسازگاری منظور شد.
 
یافته­ها: ارقام گرده­زای آذر، سهند، فرانیس، A200، آراز، اسکندر و تونو با ژنوتیپ­های گرده­گیرنده از سازگاری دانه گرده برخوردار بودند. بیشترین درصد میوه­بندی نهایی برای ژنوتیپ AL721 با استفاده از گرده ارقام آذر و اسکندر (به­ترتیب 59% و 56%)، برای ژنوتیپ­ AL1310 با استفاده از گرده ارقام آذر (41%)، سهند و اسکندر (39%)، برای ژنوتیپ NP2 با استفاده از گرده ارقام اسکندر و آذر (به­ترتیب 57% و 54%) و برای ژنوتیپ KH2 با استفاده از گرده ارقام اسکندر و آراز (به­ترتیب 44% و 43%) به دست آمد.
 
نتیجه­ گیری: با ارزیابی میوه­بندی نهایی پس از دگر گرده­افشانی کنترل شده در باغ، ارقام گرده­زا برای ژنوتیپ­های امیدبخش انتخاب شدند. ژنوتیپ­های AL721  با میوه­بندی 59% و AL1310 با میوه­بندی 25% به­ترتیب دارای بیشترین و کمترین پتانسیل باروری بودند. مشاهدات میکروسکوپی رشد لوله گرده درون مادگی نتایج ارزیابی­های باغی را تایید نمود.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Cross-(in) compatibility and introduction of the best Pollinizer in four almond Promising Genotypes to achieve Sustainable Crop Production

نویسندگان [English]

  • Mohammad Zarrinbal 1
  • Jalil Dejampour 2
  • Hossein Fathi 3
1 Assist. Prof., of Crop and Horticultural Science Research Department, East Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
2 Assoc. Prof. of Crop and Horticultural Science Research Department, East Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
3 Researcher of Crop and Horticultural Science Research Department, East Azerbaijan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
چکیده [English]

Abstract        
Background and Objective: This study was conducted to determine the pollen (in) compatibility of seven commercial cultivars in crossing with four almond (Prunus dulcis Mill.) promising genotypes and to select the best pollinizer with the aim of ensuring fruit set and stable production.
 
Materials and Methods: The percentage of initial and final fruit set of almond promising genotypes was evaluated after controlled pollination with pollinizers on experimental orchard in Sahand horticultural research station (East Azerbaijan) in two consecutive years. Also, the pollen tube growth inside the pistil of recipient genotypes was tracked using fluorescent microscope. Observing at least one pollen tube inside the ovary was considered as compatibility and stopping the pollen tube through style was considered as incompatibility.    
 
Results: All of pollinizers including Azar, Sahand, Fragness, A200, Araz, Eskandar and Tono had pollen compatibility with recipient genotypes. The highest percentage of final fruit set for AL721 was achieved when it was pollinated with Azar and Eskandar (59% and 56%, respectively), for AL1310 with Azar (41%), Sahand and Eskandar (39%), for NP2 with Eskandar and Azar (57% and 54%, respectively) and for KH2 with Eskandar and Araz (44% and 43%, respectively).  
 
Conclusion: Assessment of final fruit set after controlled pollination in orchard determined suitable pollinizers of new promising genotypes. The genotypes AL721 and AL1310 (with 59% and 25% fruit set, respectively) had the highest and lowest fertility potential. Microscopic observations of pollen tube growth inside the pistil confirmed the orchard evaluations.  
 

کلیدواژه‌ها [English]

  • Almond
  • Final Fruit Set
  • Fluorescent Microscope
  • Pollen Compatibility
  • Pollen Tube Growth
Alonso JM and Socias i Company R. 2005. Self-incompatibility expression in self-compatible almond genotypes may be due to inbreeding. Journal of the American Society for Horticultural Science, 130: 865–869. https://doi.org/10.21273/JASHS.130.6.865
Audergon JM, Guerriero R, Monteleone P and Viti R. 1999. Contribution to the study of inheritance of the character self-incompatibility in apricot. Acta Horticulturae, 488: 275–280.  https://doi.org/10.17660/ActaHortic.1999.488.43
Burgos L, Alburquerque N and Egea J. 2004. Review: Flower biology in apricot and its implications for breeding. Spanish Journal of Agricultural Research, 2(2): 227-241. https://doi:10.5424/sjar/2004022-77 
Burgos L, Berenguer T and Egea J. 1993. Self- and cross-compatibility among apricot cultivars. Hortscience, 28: 148-150. https://doi:10.21273/HORTSCI.28.2.148
Burgos L, Egea J, Guerriero R, Viti R, Monteleone P and Audergon JM. 1997. The self-compatibility trait of the main apricot cultivars and new selections from breeding programs. Journal of Horticultural Science & Biotechnology, 72: 147–154. https://doi.org/10.1080/14620316.1997.11515501
Burgos L, Perez-Tornero O, Ballester J and Olmos E. 1998. Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot. Sexual Plant Reproduction, 11: 153–158. https://doi.org/10.1007/s004970050133  
Colic S, Zec G, Fotiric Aksic M, Rahovic D and Jankovic Z. 2010. Evaluation of self-(in)compatibility in the almond (Prunus amygdalus Batsch) genotype population from the Slankamen Hill, Serbia. Archives of Biological Sciences, 62(4): 973-979. https://doi:10.2298/ABS1004973C
De Nettancourt D. 2001. Incompatibility and Incongruity in Wild and Cultivated Plants. (2nd Ed.) Springer-Verlag, Berlin, Heidelberg, Germany, 314 pp. https://doi.org/10.1007/978-3-662-04502-2 
Dejampour J, Rahnemoun H and Zarrinbal M. 2011. Investigation of main factors on bearing and blossoms hardiness of apricot cultivars in relative flowers biology. Acta Horticulturae, https://doi. 966: 51-55.
https://doi:10.17660/ActaHortic.2012.966.6
Dejampour J, Zarrinbal M, Fathi H and Mousavi Zadeh SA. 2017. Fruit Characteristics of some Almond Cultivars and Genotypes of Northwest of Iran. Seed and Plant Journal. 33(2): 195-213. (In Persian). https://doi:10.22092/spij.2017.115550
Dordevic M, Cerovic R, Nikolic D and Radicevic S. 2010. Unusual behavior of growing pollen tubes in the ovary of plum culture (Prunus domestica L.). Archives of Biological Sciences, 62(1): 137-142. https://doi:10.2298/ABS1001137D 
Dordevic M, Cerovic R, Radicevic S and Nikolic D. 2014. Incompatible pollen tubes in the plum style and their impact on fertilization success. Genetika-Belgrade, 46(2): 411-418. https://doi:10.2298/GENSR1402411D 
Dorostkar M, Mostafavi M, Saneii Shariat Panahi M, Hasani D, Khalighi A and Nikzad A. 2011. Self-compatibility and suitable planting combination of commercial cultivars of almond. Seed and Plant Journal. 27(4): 449-457. (in Persian). https://doi: 10.22092/spij.2017.111076
Egea J and Burgos L. 1996. Detecting cross-incompatibility of three North American apricot cultivars and establishing the first incompatibility group in apricot. Journal of the American Society for Horticultural Science, 121(6): 1002–1005. https://doi:10.21273/JASHS.121.6.1002
Egea J and Burgos L. 1999. Apricot breeding at the C.S.I.C. in Murcia, Spain. Acta Horticulturae, 484: 179-181.  https://doi: 10.17660/ActaHortic.1998.484.29
Entani T, Iwano M, Shiba H, Che FS, Isogai A and Takayama S. 2003. Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: Identification of a pollen-expressed F-box gene with allelic diversity. Genes to Cells, 8: 203–213. https://doi.org/10.1046/j.1365-2443.2003.00626.x
Fallah M, Imani A, Sharafi Y and Rasouli M. 2017. Study of compatibility pollen and pistil almond diallel crosses using fluorescent microscopy and percentage of fruit set. 1st International Conference and 10th National Horticultural Science Congress of Iran. September 4-7, 2017. Tehran. Iran. (In Persian).
Fotiric-Aksic M, Rakonjac V, Nikolic D, Colic S, Milatovic D, Licina V and Rahovic D. 2014. Effective pollination period in "Oblacinska" sour cherry clones. Genetika-Belgrade, 46(3): 671-680.  https://doi:10.2298/GENSR1403671A
Guerriero R and Bartolini S. 1995. Flower biology in apricot: main aspects and problems. Acta Horticulturae, 384: 261–272. https://doi:10.17660/ActaHortic.1995.384.40
Hajilou J, Grigorian V, Mohammadi SA, Nazemmieh A and Burgos L. 2006a. Pollen tube growth and fruit set percentage in two apricot cultivars under self and cross-pollination conditions. Iranian journal of horticultural science and technology, 7(3): 147-156. (In Persian).   
Hajilou J, Grigorian V, Mohammadi SA, Nazemmieh A, Romero C, Vilanova S and Burgos L. 2006b. Self- and cross-(in) compatibility between important apricot cultivars in northwest Iran. Journal of Horticultural Science & Biotechnology, 81: 513–517. https://doi.org/10.1080/14620316.2006.11512096
Halasz J, Pedryc A and Hegedus A. 2007. Origin and dissemination of the pollen-part mutated Sc haplotype which confers self-compatibility in apricot (Prunus armeniaca L.). New Phytologist, 176: 792–803. https://doi.org/10.1111/j.1469-8137.2007.02220.x
Hartman E, Levy C, Kern DM, Johnson MA and Basu A. 2014. A rapid, inexpensive and semi-quantitative method for determining pollen tube extension using fluorescence. Plant Methods, 10(3): 1-6. https://doi.org/10.1186/1746-4811-10-3  
Jacquemart AL. 2007. Methods for determining compatibility and pollinator efficiency in temperate fruit species. Fruit, Vegetable and Cereal Science and Biotechnology, 1(1): 26-38. http://hdl.handle.net/2078.1/72408
Kester DE, Gradziel TM and Micke WC. 1994. Identifying pollen incompatibility groups in California almond cultivars. Journal of American Society for Horticultural Science, 119(1): 106-109. https://doi.org/10.21273/JASHS.119.1.106
Milatovic D and Nikolic D. 2007. Analysis of self-(in) compatibility in apricot cultivars using fluorescence microscopy. Journal of Horticultural Science & Biotechnology, 82: 170–174. https://doi.org/10.1080/14620316.2007.11512215
Milatovic D, Nikolic D and Krska B. 2013a. Testing of self-(in) compatibility in apricot cultivars from European breeding programmes. Horticultural Science (Prague), 40(2): 65-71. https://doi: 10.17221/219/2012-HORTSCI
Milatovic D, Nikolic D, Fotiric-Aksic M and Radovic A. 2013b. Testing of self-(in) compatibility in apricot cultivars using fluorescence microscopy. Acta Scientiarum Polonorum-Hortorum Cultus, 12(6): 103-113. https://doi:10.1080/14620316.2007.11512215  
Milatovic D, Nikolic D, Rakonjac V and Fotiric-Aksic M. 2010. Cross-incompatibility in apricot (Prunus armeniaca L.). Journal of Horticultural Science & Biotechnology, 85: 394–398. https://doi:10.1080/14620316.2010.11512686
Newbigin E, Anderson MA and Clark AE. 1993. Gametophytic self-incompatibility systems. Plant Cell, 5(10): 1315–1324.  https://doi10.1105/tpc.5.10.1315
Nikolic D and Milatovic D. 2010. Examining self-compatibility in plum (Prunus domestica L.) by fluorescence microscopy. Genetika-Belgrade, 42(2): 387–396. https://doi:10.2298/GENSR1002387N 
Ortega E and Dicenta F. 2003. Inheritance of self-compatibility in almond: breeding strategies to assure self-compatibility in the progeny. Theoretical and Applied Genetics, 106(5): 904-911. https://doi:10.1007/s00122-002-1159-y
Ortega E and Dicenta F. 2006. Self-fertilization in homozygous and heterozygous self-compatible almonds. Scientia Horticulturae, 109: 288-292. https://doi.org/10.1016/j.scienta.2006.04.017
Ortega E, Egea J, Canovas JA and Dicenta F. 2002. Pollen tube dynamics following half- and fully-compatible pollinations in self-compatible almond cultivars. Sexual Plant Reproduction, 15: 47-51. https://doi.org/10.1007/s00497-002-0137-5 
Radicevic S, Maric S, Cerovic R and Dordevic M. 2013. Assessment of self- (in) compatibility in some sweet cherry (Prunus avium L.) genotypes. Genetika-Belgrade, 45(3): 939–952. https://doi.org/10.2298/GENSR1303939R
Rasouli M, Arzani K, Eimani A and Fattahi Moghadam MA. 2010a. An investigation of the pollination compatibility of some sweet cherry cultivars on ‘Zard Daneshkada’. Iranian journal of horticultural science, 41(2): 143-152. (In Persian). https://doi: 20.1001.1.2008482.1389.41.2.5.1
Rasouli M, Fatahi Moghadam MR, Zamani Z, Imani A and Ebadi A. 2010b. A study of the compatibility and the effects of supplementary pollination with different pollens on fruit set of self-compatible almond 'Supernova'. Iranian Journal of Horticultural Science, 40(4): 61-70. (In Persian).  https://doi: 20.1001.1.2008482.1388.40.4.7.0
Romero C, Vilanova S, Burgos L, Martinnez-Calvo J, Vicente M, Llacer G and Badenes ML. 2004. Analysis of the S-locus structure in Prunus armeniaca L. Identification of the S-haplotype specific S-RNase and F-box genes. Plant Molecular Biology, 56: 145-157. https://doi10.1007/s11103-004-2651-3
Sanzol J. 2009. Genomic characterization of self-incompatibility ribonucleases (S-RNases) in European pear cultivars and development of PCR detection for 20 alleles. Tree Genetics & Genomes, 5: 393–405. https://doi: 10.1007/s11295-008-0194-5
Socias i Company R, Alonso JM, Kodad O and Gradziel Th M. 2012. Almond, in: Badenes ML and Byrne DH. (Eds.), Fruit breeding. Springer, New York, pp. 697–728. https://doi.org/10.1007/978-1-4419-0763-9 
Socias i Company R. 2017. Pollen–Style (In) compatibility: Development of autogamous cultivars, in: Socias i Company R and Gradziel TH M. (Eds.), Almonds: Botany, Production and Uses. CPI Group, UK, pp. 188–208. ISBN: 978-1-78064-354-0
Sonneveld T, Tobbut KR and Robbins TP. 2003. Allele-specific PCR detection of sweet cherry self-incompatibility (S) allele S1-S16 using consensus and alleles-specific primers. Theoretical and Applied Genetics, 107(6): 1059-1070.  https://doi10.1007/s00122-003-1274-4
Sutherland BG, Tobutt KR and Robbins TP. 2008. Trans-specific S-RNase and SFB alleles in Prunus self-incompatibility haplotypes. Molecular Genetics and Genomics, 279: 95–106. https://doi10.1007/s00438-007-0300-7
Tobutt KR, Boskovic R, Cerovic R, Sonneveld T and Ruzic DJ. 2004. Identification of incompatibility alleles in the tetraploid species sour cherry. Theoretical and Applied Genetics, 108(5): 775–785. https://doi10.1007/s00122-003-1511-x
Vilanova S, Badenes ML, Burgos L, Martinez-Calvo J, Liacer G and Romero C. 2006. Self-compatibility of two apricot selections is associated with two pollen-part mutations of different nature. Plant Physiology, 142(2): 629–641. https://doi10.1104/pp.106.083865
Vilanova S, Romero C, Liacer G and Badenes ML, 2005. Identification of self (in)-compatibility alleles in apricot (Prunus armeniaca L.) by PCR and sequence analysis. Journal of the American Society for Horticultural Science, 130(6): 893-898. https://doi.org/10.21273/JASHS.130.6.893
Wang PP, Gao ZH, Ni, ZJ, Zhang Z and Cai BH. 2013. Self-compatibility in “Zaohong” Japanese apricot is associated with the loss of function of pollen S genes. Molecular Biology Reports, 40(11): 6485-6493. https://doi10.1007/s11033-013-2765-2
Zarrinbal M, Baghban Kohnehrouz B, Soleimani A and Dejampour J. 2019. Assessment of fruit set percentage and pollen compatibility status in different apricot cultivars. Journal of Agricultural Science and Sustainable Production, 29(2): 205-221. (In Persian).     
Zarrinbal M, Baghban Kohnehrouz B, Soleimani A, Nayeri Sh, Kousari Nasab M, Dejampour J and Rahnemoun H. 2017. Study of self-(in) compatibility alleles in some promising apricot genotypes by sequence analysis. 1st International Conference and 10th National Horticultural Science Congress of Iran. September 4-7, 2017. Tehran. Iran. (In Persian).
Zarrinbal M, Soleimani A, Baghban Kohnehrouz B, Pazhouhandeh M, Dejampour J and Rahnemoun H. 2016. Study of pollen tube growth throughout style using florescent microscopy in some apricot genotypes. 19th National and 7th International Congress of Biology. 30 Aug-1 Sep 2016. Tabriz. Iran. (In Persian).     
Zarrinbal M, Fathi H, Dejampour J and Mousavi Zadeh SA. 2020. Nut and kernel characteristics of some almond cultivars and genotypes in northwest of Iran. Iranian Journal of Horticultural Science and Technology, 21(4): 395-414. (In Persian). https://doi: 20.1001.1.16807154.1399.21.4.15.5
Zarrinbal, M., Soleimani, A., Baghban kohnehrouz, B. and Dejampour, J. 2018. Self-compatibility in some apricot (Prunus armeniaca L.) genotypes. Crop Breeding Journal. 8(1-2): 49-59. https://doi: 10.22092/cbj.2018.122435.1025