بررسی ارتباط مکانی علف هرز دم‌روباهی کشیده (Alopecurus myosuroides Huds.) با خصوصیات خاک در مزرعه گندم با استفاده از روابط زمین‌آماری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل

2 استاد گروه زراعت دانشکده کشاورزی، دانشگاه زابل

3 دانشکده کشاورزی دانشگاه صنعتی شاهرود

10.22034/saps.2023.58659.3123

چکیده

چکیده
اهداف: هدف از این پژوهش، مطالعه ارتباط مکانی خصوصیات فیزیکی و شیمیایی خاک با عملکرد گندم در شرایط رقابت با علف­های هرز در شرایط آب و هوایی اصفهان بود.
 
مواد و روش­ها: در سال زراعی 99-1398، آزمایش مزرعه­ای در قالب سیستم شبکه­ای با فاصله 2 × 2 متر انجام شد. در هر نقطه شبکه، ویژگی­های خاک، عملکرد دانه گندم و تراکم علف هرز دم­روباهی کشیده اندازه­گیری شد. توزیع مکانی داده­ها، با استفاده از تکنیک زمین­آمار مورد تحلیل قرار گرفت.
 
یافته­ها: نتایج نشان داد عملکرد دانه دارای همبستگی مکانی قوی با صفات نیتروژن، فسفر، پتاسیم، pH و سیلت خاک به ترتیب به میزان 9/83، 3/78، 0/79، 1/80 و 7/81 درصد در دامنه تأثیر 3/2، 2/3، 2/3، 7/3 و 0/4 متر بود. این در حالی بود که در نقاطی از مزرعه که محتوای شن و EC بالاتری داشت غالباً عملکرد دانه روی نقشه کاهش نشان داد. علف هرز دم­روباهی کشیده همبستگی مکانی قوی با نیتروژن و رس خاک و همبستگی مکانی متوسط با شن خاک نشان داد، درحالی­که علف هرز مذکور در نقاطی از مزرعه با مقادیر پایینی از فسفر، پتاسیم، pH و سیلت خاک تراکم بالاتری داشت. همبستگی مکانی بین جمعیت علف هرز دم­روباهی کشیده و عکس عملکرد دانه گندم برابر با 7/60 درصد و در دامنه تأثیر 2/4 متر بود.
 
نتیجه­ گیری: ویژگی­های خاک و جمعیت علف هرز در سطح مزرعه از مکانی به مکان دیگر تغییر می­کند که این تغییرات می­تواند توزیع لکه ­ای و غیریکنواخت عملکرد در سطح مزرعه را به همراه داشته باشد. عملکرد دانه، بیشترین همبستگی مکانی را با نیتروژن خاک نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Spatial Relationship of Black-grass (Alopecurus myosuroides Huds.) with Soil Characteristics in Wheat Field Using Geostatistical Relationships

نویسندگان [English]

  • Abbas Nasiri Dehsorkhi 1
  • Seyed Ahmad Ghanbari 2
  • Hassan Makarian 3
  • Mohammad Reza Asgharipour 1
1 Agronomy Department, Agriculture Faculty, University of Zabol
2 Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, Iran
3 Agriculture Faculty, University of Shahroud
چکیده [English]

Abstract
Background and Objective: The aim of this research was to investigate the spatial relationship between physical and chemical properties of soil and wheat yield in the conditions of competition with weeds in Isfahan weather conditions.
 
Materials and Methods: In the crop year 2019-2020, field experiment was conducted in the form of a grid system with a distance of 2 x 2 meters. At each grid point, soil characteristics, grain yield of wheat and weed density were measured. The spatial distribution of the obtained data was analyzed using the geostatistical technique.
 
Results: The results showed that the grain yield has a strong spatial correlation with nitrogen, phosphorus, potassium, pH, and silt traits at the rates of 83.9, 78.3, 79.0, 80.1 and 81.7, respectively were in the range of 2.3, 3.2, 3.2, 3.7 and 4.0 meters. The areas where the wheat yield was lower were often in accordance with the areas where the sand and EC content of the soil were the highest. Alopecurus myosuroides had a strong spatial correlation with nitrogen and clay of soil, and moderate spatial correlation with soil sand; while this weed was found in soils with low amount of phosphor, potassium, pH and silt. Spatial correspondence between weed density and reverse grain yield was 60.7% in the effect range of 4.2 meters.
 
Conclusion: The characteristics of the soil and the weed population in the field change from one place to another, and these variations can cause patchy and uneven distribution of yield in the field. Grain yield showed the highest spatial correlation with soil nitrogen.
 

کلیدواژه‌ها [English]

  • Kriging
  • Patchy Distribution
  • Range
  • Variogram
  • Weed Map

Afshar H, Salehi MH, Mohammadi J and Mehnatkesh A. 2009. Spatial variability of soil properties and irrigated wheat yield in a quantitative suitability map, a case study: Shahr-e-Kian area, Chaharmahalva-Bakhtiari Province. Journal of Water and Soil, 23(1): 161-172. https://doi.org/10.22067/jsw.v0i0.1548 (In Persian).

Aghaeipour N, Zavareh M, Pirdashti H, Asadi H and Bahmanyar MA. 2019. Evaluation of spatial variability of some soil chemical and physical properties in Foumanat Plain paddies using geostatistical Method. Applied Research in Field Crops, 31(4): 50-71. doi: 10.22092/AJ.2018.116019.1206 (In Persian).

Alimoradi L. 2010. Weed community structure in response to crop rotation and soil microclimatic conditions. Ph.D. Dissertation, Ferdowsi University of Mashhad. (In Persian).

Avarsegi H, Khodarahmi M, Diyanat M, Majidi Heravan E and Soughi HA. 2023. Grouping bread wheat cultivars based on agronomic characteristics using multivariate statistical methods. Journal of Crop Breeding, 14(44): 239-252. doi: 10.52547/jcb.14.44.239 (In Persian).

Ayoubi Sh, Mohammad Zamani S and Khormali F. 2010. Wheat yield prediction through soil properties using principle component analysis. Iranian Journal of Soil and Water Research, 1: 51-57.  dor: 20.1001.1.2008479.1388.40.1.7.9 (In Persian).

Bahmani M, Mohammadi J, Esfandiarpour Boroujeni I, Motaghian HR and Saeidi K. 2019. Assessment of the spatial variability of some soil characteristics and yield of Rosa damasceneea Mill (case study: Bardsir City, Kerman Province). Journal of Water and Soil, 33(1): 163-179. https://doi.org/10.22067/jsw.v33i1.75236 (In Persian).

Bayazidi S. 2015. The study of spatial variability and mapping of different forms of Potassium and Iron in some soils of Urmia plain. MSc Thesis, Urmia University. (In Persian).

Bijanzadeh E, Mokarram M and Naderi R. 2014. Applying spatial geostatistical analysis models for evaluating variability of soil properties in eastern Shiraz, Iran. Iran Agricultural Research, 33(2): 35-46. doi: 10.22099/IAR.2015.2868

Cardina J, Sparrow DH and McCoy EL. 1996. Spatial relationships between seed bank and seedling populations of common lambsquarters (Chenopodium album) and annual grasses. Weed Science, 44: 298-308. https://doi.org/10.1017/S0043174500093929

Colbach N, Forcella F and Jonson GA. 2000. Spatial and temporal stability of weed factors on the weed flora in crops in the Gadalyvir. Valley, 30: 375-382.

Cook SE and Bramley RGV. 2000. Coping with variability in agricultural production: implications for soil testing and fertilizer management. Communications in Soil Science and Plant Analysis, 31: 1531-1551. https://doi.org/10.1080/00103620009370524

Cui B, Huang W, Song X, Ye H and Dong Y. 2017. Study the spatial-temporal variation of wheat growth under different site-specific nitrogen fertilization approaches. In International Conference on Computer and Computing Technologies in Agriculture (pp. 316-332). Springer, Cham.

Edalat M and Kazemeini SA. 2013. Estimating cardinal temperatures of tumble mustard (Sisymbrium altissimum) and slender foxtail (Alopecurus myosuroides) seed germinations. 5th Iranian Weed Science Congress, Tehran. (In Persian).

Fakoor Sharghi AR. 2013. The effect of crop rotation on diversity and spatial distribution of weeds seed bank and seedling communities and arthropods fauna. M.Sc Thesis, Faculty of Agriculture, Shahrood University of Technology. (In Persian).

Ghiassi Z. 2013. Effects of patchy and conventional herbicide application on spatial variability of winter wheat (Triticum aestivum L.) weeds population. M. Sc. Thesis, Shahrood University of Technology. (In Persian).

Gholami Golafshan M, Vazan S, Paknejad F, Oveisi M and Elyasi Sh. 2009. Spatial relationships between weed seedbank and seedling and their population distribution models in corn. Weed Research Journal, 1(1): 65-76. (In Persian).

Holm L, Doll J, Holm E, Pancho JV and Herberger JP. 1997. World Weeds: Natural Histories and Distribution, New York, USA, John Wiley and Sons.

Isaaks EH and Srivastava RM. 1989. An introduction to applied geostatistics. Oxford University Press. New York. 561p.

Jiang P and Thelen KD. 2004. Effect of soil and topographic properties on crop yield in a north-central corn–soybean cropping sysem. Agronomy Journal, 96(1): 252-258. https://doi.org/10.2134/agronj2004.0252

Jurado-Exposito M, Lopez-Granados F, Garcia-Torres L, Garcia-Ferrer A, Sanches de La Orden M and Atenciano S. 2003. Multi-species weed spatial variability and sitespecific management maps in cultivated sunflower. Weed Science, 51: 319-328.  https://doi.org/10.1614/0043-1745(2003)051[0319:MWSVAS]2.0.CO;2

Jurado-Expósito M, López-Granados F, González-Andújar JL and Garcıa-Torres L. 2004. Spatial and temporal analysis of Convolvulus arvensis L. populations over four growing seasons. European Journal of Agronomy, 21(3): 287-296.  https://doi.org/10.1016/j.eja.2003.10.001

Karami A and Afzalinia S. 2018. Relationship between spatial variability pattern of wheat yield and soil properties. Asian Soil Research Journal, 1(1): 1-14. https://doi.org/10.9734/asrj/2018/v1i1626

Keyvani N. 2015. The role of aspect on spatial variability of soil physical and chemical properties, peach quality and quantity in Saman region, Shahrekord. MSc Thesis, Shahrekord University. (In Persian).

Khazaie E. 2016. The evaluation of spatial variability nitrogen, phosphorus and potassium in agroindustrial land of Sharif Abad – Qazvin by Geostatic and GIS. MSc Thesis, Shahed University. (In Persian).

Kiyani M. 2015. The study of the spatial relationship of some soil properties with the quantitative, qualitative and vegetative properties of Valencia orange in Kazerun, Fars province. MSc Thesis, Shahrekord University. (In Persian).

Liebman M. 1989. Effects of nitrogen fertilizer, irrigation and crop genotype on canopy relations and yields on a intercrop/weed mixture. Field Crops Research, 22: 83-100. https://doi.org/10.1016/0378-4290(89)90060-9

Lipiec J and Usowicz B. 2018. Spatial relationships among cereal yields and selected soil physical and chemical properties. Science of the Total Environment, 633(2018) 1579-1590. https://doi.org/10.1016/j.scitotenv.2018.03.277

Lucas RE and Davis JF. 1961. Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Science 92(3):177-182. doi: 10.1097/00010694-196109000-00005

Makarian H. 2008. Investigation of spatial and temporal dynamic of weed seed bank and seedling populations and its effect on saffron (crocus sativus L.) leaf dry weight under different weed management conditions. PhD Thesis, Faculty of Agriculture, Ferdowsi University of Mashhad. (In Persian).

Makarian H and Hosseini RS. 2011. Spatial distribution of weeds and its effect on wheat (Triticum aestivum L.) biomass. Crop Production, 3(4): 31-47. dor: 20.1001.1.2008739.1389.3.4.3.4 (In Persian).

Makarian H and Abbasdokht H. 2014. Effects of different weed management methods on spatial and temporal dynamic of weed populations and saffron above ground biomass. Journal of Plant Production Research, 21(2): 107-124. dor: 20.1001.1.23222050.1393.21.2.6.8 (In Persian).

Mashayekhi P and Marjovvi AR. 2023. Spatial distribution of some soil physico-chemical properties in agricultural soils of Isfahan province. Iranian Journal of Soil and Water Research, 54(2): 389-405. doi: 10.22059/IJSWR.2023.352609.669414 (In Persian).

Metcalfe H, Milne AE, Webster R, Lark RM, Murdoch AJ and Storkey J. 2016. Designing a sampling scheme to reveal correlations between weeds and soil properties at multiple spatial scales. Weed Research, 56(1): 1-13. https://doi.org/10.1111/wre.12184

Metcalfe H, Milne AE, Murdoch AJ and Storkey J. 2017. Does variable soil pH have an effect on the within-field distribution of A. myosuroides. Aspects of Applied Biology, 134: 145-150.

Metcalfe H, Milne AE, Webster R, Lark RM, Murdoch AJ, Kanelo L and Storkey J. 2018. Defining the habitat niche of Alopecurus myosuroides at the field scale. Weed Research, 58(3): 165-176. doi: 10.1111/wre.12300

Metcalfe H, Milne AE, Coleman K, Murdoch AJ and Storkey J. 2019. Modelling the effect of spatially variable soil properties on the distribution of weeds. Ecological Modelling, 396: 1-11. https://doi.org/10.1016/j.ecolmodel.2018.11.002

Miller MP, Singer MJ and Nielsen DR. 1988. Spatial variability of wheat yield and soil properties on complex hills. Soil Science Society of America Journal, 52(4): 1133-1141. https://doi.org/10.2136/sssaj1988.03615995005200040045x

Mohammadi J. 2002. Spatial variability of soil fertility, wheat yield and weed density in a one hectare field in Shahre Kord. Journal of Agricultural Science and Technology, 4: 83-92. dor: 20.1001.1.16807073.2002.4.1.7.7

Mohammadi Z. 2019. Effect of survey scale on estimation power of predicting models for spacial variation of soil properties. M.Sc. Thesis, University of Mohaghegh Ardabili. (In Persian).

Moradi Kalbolandi M. 2020. The study of effective factors on the heterogeneity of spatial distribution of winter wheat yield using geostatistic and remote sensing methods. MS.c. Thesis in Agroecology, Faculty of Agriculture, Shahrood University of Technology. (In Persian).

Moradi Kalbolandi M, Makarian H, Baradaran Firouz Abadi M and Asghari HR. 2020. Spatial dependence of growth and yield of winter wheat and weeds using geostatistical and remote sensing methods. Journal of Plant Protection, 34(2): 259-271. doi: 10.22067/JPP.V34I2.85286 (In Persian).

Murdoch AJ, Flint C, Pilgrim RA, de la Warr PN, Camp J, Knight B, Lutman P, Magri B, Miller P, Robinson T, Sandford S and Walters N. 2014. Eyeweed: automating mapping of black-grass (Alopecurus myosuroides) for more precise applications of pre- and post-emergence herbicides and detecting potential herbicide resistance. Asp. Appl. Biol. – Crop Production in Southern Britain: Precision Decisions for Profitable Cropping 127, 151–158 Association of Applied Biologists, Wellesbourne, UK.

Nassiri Mahallati M, Koocheki A and Jahani M. 2016. Estimating within field variability of wheat yield using spatial variables: an approach to precision agriculture. Journal of Agroecology, 8(3): 329-345. doi: 10.22067/JAG.V8I3.34502 (In Persian).

Nordmeyer H and Dunker M. 1999. Variable weed densities and soil properties in a weed mapping concept for patchy weed control. In: Proceedings Second European Conference on Precision Agriculture, Odense Congress Centre, Denmark, 11-15 July. Sheffield Academic Press, 453-462.

Paz JO, Batchelor WD, Tylka GL and Hartzler RG. 2001. A modeling approach to quantifying the effects of spatial soybean yield limiting factors. Transactions of the ASAE, 44(5): 1329-1334. doi: 10.13031/2013.6423

Raza MAS, Zaheer MS, Saleem MF, Khan IH, Ahmad S, Aslam MU and Iqbal R. 2020. Drought ameliorating effect of exogenous applied cytokinin in wheat. Pakistan Journal of Agricultural Sciences, 57(3): 725-733. doi: 10.21162/PAKJAS/20.8183

Shakarami M. 2020. Evaluation of the effect of dual-purpose sulfonylurea herbicides on weed dynamics of wheat field in Khorramabad climate. MSc Thesis, Lorestan University. (In Persian).

Vaezi AR, Babaei F, Taheri M and Abbasi M. 2017. Spatial variability of wheat grain yield and soil properties in semi-arid rainfed croplands in south of Zanjan province. Water and Soil Science, 27(3): 65-78. (In Persian).

Vizantinopoulos S and Katranis N. 1998. Management of blackgrass (Alopecurus myosuroides) in winter wheat in Greece. Weed Technology, 12: 484-490. https://doi.org/10.1017/S0890037X00044195

Walter AM, Christensen S and Simmelsgaard SE. 2002. Spatial correlation between weed species densities and soil properties. Weed Research, 42(1): 26-38. https://doi.org/10.1046/j.1365-3180.2002.00259.x

Webster R and Oliver MA. 2001. Geostatistics for Environmental Scientists. John Wiley and Sons Ltd., Chichester, UK.