اثر کاربرد باکتری‌های محرک رشد بر عملکرد برنج در مقادیر کاهش‌یافته کودهای شیمیایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد اگروتکنولوژی، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 گروه زراعت، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 پژوهشکده ژنتیک و زیست‌فناوری ‌کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

4 گروه زراعت، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

مقدمه و اهداف: با توجه به اهمیت گیاه برنج در تأمین امنیت غذایی در سطح ملی و جهانی، یافتن مسیرهای افزایش تولید این گیاه استراتژیک امری ضروری است. برای این منظور، استفاده از ریزجانداران افزاینده رشد (به‌طور جداگانه یا در ترکیب با مقادیر کاهش‌یافته کودهای شیمیایی) در سیستم‌های کشت برنج، به‌عنوان یک راه بالقوه برای بهبود کارایی کود و کاهش مشکلات زیست ‌محیطی مورد توجه می‌باشد. لذا این پژوهش با هدف ارزیابی تاثیر باکتری‌های افزاینده رشد بر عملکرد و اجزای عملکرد برنج رقم امیر در مقادیر کاهش‌یافته کودهای شیمیایی اجرا شد.
 
مواد و روش‌ها: این آزمایش به صورت کرت‌های خردشده و در قالب طرح بلوک‌های کامل تصادفی در سه تکرار اجرا شد. تیمارهای آزمایشی شامل دو سطح کودی (100 و 75 درصد مصرف کود بر اساس نتایج آزمون خاک به‌ترتیب به‌عنوان سطح کودی مطلوب و کاهش‌یافته) و چهار تیمار تلقیح با باکتری (تلقیح جداگانه‌ی هر یک از باکتری‌هاRahnella aquatilis، Burkholderia cepacia، ترکیبی (R. aquatilis+B. cepacia) و شاهد (عدم تلقیح باکتری)) به‌ترتیب به‌عنوان کرت‌های اصلی و فرعی بودند. برای تجزیه و تحلیل داده‌ها از نرم‌افزار آماری SAS نسخه 4/9 استفاده گردید. مقایسه میانگین‌ها نیز به‌روش حداقل تفاوت معنی‌دار (LSD) در سطح احتمال پنج درصد انجام شد.
 
یافته­ها: نتایج نشان داد که از نظر صفات مورد مطالعه، بین سطوح کودی کاهش‌یافته و مطلوب اختلاف معنی‌داری وجود نداشت. درصورتیکه استفاده از باکتری‌های افزاینده رشد سبب بهبود صفات مورد مطالعه برنج نسبت به تیمار شاهد (عدم تلقیح) شد. به عبارت دیگر تلقیح ترکیبی باکتری‌های R. aquatilis و B. cepacia موجب افزایش ارتفاع بوته (3/11 درصد)، طول خوشه (6/11 درصد)، تعداد پنجه در بوته (1/29 درصد)، تعداد دانه پر در خوشه (27 درصد)، وزن هزار دانه (9/7 درصد)، عملکرد دانه (2/25 درصد)، عملکرد بیولوژیک (6/20 درصد)، مقدار پتاسیم در دانه و اندام هوایی (به‌ترتیب 7/46 و 6/45 درصد) و مقدار روی در دانه و اندام هوایی (به‌ترتیب 25/106 و 58/70 درصد) نسبت به تیمار شاهد (عدم تلقیح) شد.
نتیجه‌گیری: در مجموع می‌توان با مصرف کمتر کودهای شیمیایی و جایگزینی آن با کودهای زیستی، بدون تفاوت معنی‌دار در عملکرد و اجزای عملکرد برنج در جهت نیل به اهداف کشاورزی پایدار گام برداشت. کاربرد باکتری‌های افزاینده رشد به صورت ترکیبی (به‌عنوان بهترین تیمار) موجب افزایش بیشتر صفات مورد مطالعه شد. به‌طوری که این صفات اختلاف آماری معنی‌داری در مقایسه با تیمار عدم کاربرد باکتری‌های افزاینده رشد داشتند که نشان‌دهنده دستیابی به عملکرد مطلوب به همراه بهبود سلامت محیط زیست می‌باشد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Plant Growth Promoting Bacteria on Yield of Rice under Reduced Chemical Fertilizers

نویسندگان [English]

  • Tayebeh Jolideh 1
  • Faezeh Zaefarian 2
  • Esmaeil Bakhshandeh 3
  • Maryam Sadegh 4
1 Ms.c. Student of Agrotechnology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
2 Department of agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources
3 Genetics and Agricultural Biotechnology Institute of Tabarestan & Sari Agricultural Sciences and Natural Resources University, Sari, Iran
4 Department of Agronomy, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University
چکیده [English]

Background and Objective: According to the importance of rice in ensuring food security at the national and international levels, it is essential to find ways to increase the production of this strategic crop. For this purpose, the use of growth-promoting microorganisms (alone or in combination with reduced amounts of chemical fertilizers) in rice cultivation systems is considered as a potential way to improve fertilizer efficiency and reduce environmental problems. Therefore, this study was conducted to evaluate the effect of growth-promoting bacteria on the yield and yield components of rice cv. Amir under reduced amounts of chemical fertilizers.
 
Materials and Methods: This experiment was conducted in a split-plot, based on randomized complete block design with three replications. The experimental treatments included two fertilizer levels (100 and 75 percent of fertilizer application based on soil test results as the optimal and reduced fertilizer levels, respectively) and four bacterial inoculation treatments (separate inoculation of each of the bacteria Rahnella aquatilis, Burkholderia cepacia, combination (R. aquatilis + B. cepacia) and control (no bacterial inoculation)) as the main and subplots, respectively. SAS version 9.4 statistical software was used to analyze the data. Comparison of means was also performed using the least significant difference (LSD) method at a probability level of 5%.
 
Results: According to the results, there was no significant difference between the optimal and reduced fertilizer levels in terms of the studied traits. While, the use of plant growth promoting bacteria improved the studied traits of rice compared to the control treatment (no inoculation). In other words, combined inoculation of R. aquatilis and B. cepacia, increases the height of the plant (11.3 percent), panicle length (11.6 percent), the number of total tillers per plant (29.1 percent), the total number of filled seeds in panicle (27 percent), thousand seed weight (7.9 percent), grain yield (25.2 percent), biological yield (20.6 percent), the amount of potassium in grain and above-ground biomass (46.6 and 45.6 percent, respectively) and the amount of zinc in grain and above-ground biomass (106.25 and 70.58 percent, respectively) compared to the control treatment (no inoculation).
 
Conclusion: In general, by using less chemical fertilizers and replacing them with biofertilizers, without any significant difference in rice yield and yield components, can achieve sustainable agriculture goals. The use of growth-promoting bacteria in combination (as the best treatment) led to a further increase in the studied traits. So that these traits had a statistically significant difference compared to the treatment of without the use of growth-promoting bacteria, which indicates the achievement of desired yield along with improved environmental health.
 

کلیدواژه‌ها [English]

  • Absorption of Elements
  • Potassium and Zinc Solubilizing Bacteria
  • Yield and Yield Components
Abdel-Megeed TM, El-Habet HB and Elsadany AY. 2017. Response of some rice cultivars to rhizobacteria (PGPR), different rates of nitrogen fertilizer and its combinations under flooding condition. Journal of Plant Production, 8(3): 381-389. https://doi.org/10.21608/jpp.2017.39974
Ahemad M and Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University Science, 26(1): 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
Asghari J, Ehteshami SMR, Rajabi Darvishan Z and Khavazi K. 2014. Study of root inoculation with plant growth promoting bacteria (PGPB) and spraying with their metabolites on chlorophyll content, nutrients uptake and yield in rice (Hashemi cultivar). Journal of Soil Biology, 2(1): 21-31. (In Persian) https://doi.org/10.22092/sbj.2014.100088
Bahuguna A, Sharma S, Yadav J and Yadav N. 2020. Effect of biochar, carpet waste, FYM and PGPR on growth and yield of rice under organic farming system. International Journal of Current Microbiology and Applied Sciences, 9(3): 1450-1456. https://doi.org/10.20546/ijcmas.2020.903.169
Bakhshandeh E, Davatgar F and Moradi H. 2022. Improvement of quantitative and qualitative characteristics of coriander using native zinc solubilizing bacteria and zinc sulfate under greenhouse condition. Journal of Horticultural Plants Nutrition, 5(1): 1-16. (In Persian) https://doi.org/10.22070/HPN.2021.13506.1116
Bakhshandeh E, Rahimian H, Pirdashti HA and Nematzadeh GA. 2015. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran. Journal of Applied Microbiology, 119(5): 1371-82. https://doi.org/10.1111/jam.12938
Bakhshandeh E, Rahimian H, Pirdashti HA and Nematzadeh GA. 2014. Phosphate solubilization potential and modeling of stress tolerance of rhizobacteria from rice paddy soil in northern Iran. World Journal of Microbiology and Biotechnology, 30: 2437-2447. https://doi.org/10.1007/s11274-014-1669-1
Ebrahimi-Chamani H, Yasari E and Pirdashti HA. 2014. Effect of phosphate solubilizing bacteria and phosphorous level on rice (Oryza sativa L.). Agricultural Advances, 3: 56-66. https://doi.org/10.14196/aa.v3i2.1096
Estefan G, Sommer R and Ryan J. 2013. Methods of soil, plant, and water analysis. A manual for the west asia and north africa region, International Center for Agricultural Research in the Dry Areas (ICARDA), 244.
Ghasemi Lemraski M, Normohamadi Gh, Madani H, Heidari Sharifabad H and Mobasser HR. 2014. Effect of silicon and potassium foliar application and nitrogen rates on yield and yield components of Iranian rice cultivars, Tarom Hashemi and Tarom Mahalli. New Finding in Agriculture, 9(1): 47-67. (In Persian)
Ghazi S, Diab AM, Khalafalla MM and Mohamed RA. 2022. Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato- biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Biological Trace Element Research, 200: 364-374. https://doi.org/10.1007/s12011-021-02631-3
Gilani Z, Pirdashti H and Bakhshandeh B. 2018. Effect of potassium fertilizer with Piriformospora indica and Pantoea ananatis on yield, yield components and potassium uptake of rice (cv. ‘Tarom Mahalli’). Agricultural Science and Sustainable Production, 28(3): 43-54. (In Persian)
Grüngreiff K, Gottstein T and Reinhold D. 2020. Zinc deficiency- An independent risk factor in the pathogenesis of haemorrhagic stroke? Nutrients, 12(11): 3548. https://doi.org/10.3390/nu12113548
Hasanuzzaman M, Fujita M, Nahar K and Biswas JK. 2019. Advances in rice research for abiotic stress tolerance. United Kingdom: Woodhead Publishing.
Hussain A, Ahmad M, Nafees M, Iqbal Z, Luqman M, Jamil M, Maqsood A, Mora-Poblete F, Ahmar S, Chen JT and Alyemeni MN. 2020. Plant-growth-promoting Bacillus and Paenibacillus species improve the nutritional status of Triticum aestivum L.. PLoS One, 15(12): e0241130. https://doi.org/10.1371/journal.pone.0241130
Javadi M and Aminpanah H. 2016. Effect of Azospirillum lipoferum inoculation, previous crop, and usage nitrogen on rice (Oryza sativa L.) growth and yield. Journal of Ecophysiology, 10(2): 311-326. (In Persian)
Kandil EE, El-Banna AA, Tabl DM, Mackled MI, Ghareeb RY, Al-Huqail AA, Ali HM, Jebril J and Abdelsalam NR. 2022. Zinc nutrition responses to agronomic and yield traits, kernel quality, and pollen viability in rice (Oryza sativa L.). Frontiers in Plant Science, 13: 791066. https://doi.org/10.3389/fpls.2022.791066
Kazemi M and Mirhashmi M. 2017. Agroecology. Agricultural Education Research Publications, Mashhad, Iran. (In Persian)
Keshavarz J, Aliasgharzad N, Oustan S, Emadi M and Ahmadi A. 2013. Isolation and characterization of potassium solubilizing bacteria in some Iranian soil. Archives of Agronomy and Soil Science, 59(12): 1713-1723. https://doi.org/10.1080/03650340.2012.756977
Kobua CK, Jou YT and Wang YM. 2021. Advantages of amending chemical fertilizer with plant-growth-promoting rhizobacteria under alternate wetting drying rice cultivation. Agriculture, 11(7): 605. https://doi.org/10.3390/agriculture11070605
Lavakush Yadava J, Verma JP, Jaiswal DK and Kumar A. 2014. Evaluation of PGPR and different concentration of phophorus level on plant growth, yield and nutrient content of rice (Oryza sativa L.). Ecological Engineering, 62: 123-128. https://doi.org/10.1016/j.ecoleng.2013.10.013
Maathuis FJ. 2009. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3): 250-258. https://doi.org/10.1016/j.pbi.2009.04.003
Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, Bisht JK, Pattanayak A, Naveed M and Dotaniya ML. 2016. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering, 107: 8-32. https://doi.org/10.1016/j.ecoleng.2017.06.058
Migahed HA, Ahmed AE and Abd El-Ghany BF. 2004. Effect of different bacterial strains as biofertilizer agents on growth, production and oil of Apium graveolens under calcareous soil. Arab Universities Journal of Agricultural Science, 12(2): 511-525.
Mohammadi K, Ghalavand A, Aghaalikhani M, Heidari G and Sohrabi Y. 2011. Introducing a sustainable soil fertility system for chickpea (Cicer arietinum L.). African Journal of Biotechnology, 10: 6011-6020.
Moslehi N, Niknejad Y, Fallah Amoli H and Kheyri N. 2016. Effect of integrated application of chemical, organic and biological fertilizers on some of the morphophysiological traits of rice (Oryza sativa L.) Tarom Hashemi cultivar. Crop Physiology Journal, 8(3): 87-103. (In Persian)
Mumtaz MZ, Ahmad M, Moazzam J and Tanveer H. 2017. Zinc solubilizing Bacillus spp. potential candidatesfor biofortification in maize. Microbiological Research, 202: 51-60. https://doi.org/10.1016/j.micres.2017.06.001
Naher UA, Panhwar QA, Othman R, Ismail MR and Berahim Z. 2016. Biofertilizer as a supplement of chemical fertilizer for yield maximization of rice. Journal of Agriculture Food and Development, 2(0): 16-22.
Neiayeshpoor L, Marashi SK and Gilani A. 2017. Effect of Pseudomonas and chemical fertilizer of potassium sulfate on quantitative and qualitative characteristics of corn (Zea mays L.). Journal of Plant Production Science, 7(2): 103-113. (In Persian)
Omidi H, Naghdi Badi H, Golzad A and Torabi HM.. 2009. The effect of chemical and biofertilizer source of nitrogen on qualitative and quantitative yield of Saffron (Crocus sativus L.). Journal of Medicinal Plants, 8(30): 98-109 (In Persian)
Parmar P and Sindhu SS. 2013. Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiology Research, 3(1): 25-31. doi:10.5923/j.microbiology.20130301.04
Pirdashti HA and Shahsavarpour Lendeh Kh. 2017. Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecological Engineering, 103: 164-169. https://doi.org/10.1016/j.ecoleng.2017.03.008
Rajapaksha RMCP, Herath D, Senanayake AP and Senevirathne, M. GTL. 2011. Mobilization of rock phosphate phosphorus through bacterial inoculants to enhance growth and yield of wetland rice. Communications in Soil Science and Plant Analysis, 42(3): 301-314. https://doi.org/10.1080/00103624.2011.539084
Ramesh A, Sushil KS, Mahaveer PS, Namrata Y and Joshi Om P. 2014. Plant growth-promoting traits in Enterobacter cloacae subsp. dissolvens MDSR9 isolated from soybean rhizosphere and its impact on growth and nutrition of soybean and wheat upon inoculation. Agricultural Research, 1: 53-66. https://doi.org/10.1007/s40003-014-0100-3
Sagar A. 2022. Synergistic effect of Azotobacter nigricans and nitrogen, phosphorus and potassium fertilizer on agronomic and yield traits of maize (Zea mays L.). Frontiers in Plant Science, 13: 952212. https://doi.org/10.3389/fpls.2022.952212
Shaheen SM, Antoniadis V, Shahid M, Yang Y, Abdelrahman H, Zhang T, Hassan EE., Bibi I, Niazi NK, Younis SA, Almazroui M, Tsang YF, Sarmah AK, Kim KH and Rinklebe J. 2022. Sustainable applications of rice feedstock in agro-environmental and construction sectors: a global perspective. Renewable and Sustainable Energy Reviews, 153: 111791. https://doi.org/10.1016/j.rser.2021.111791
Sharaan AN and El-Smie FSA. 1999. Response of wheat varieties to some environmental influences. (1999). Effect of seeding rates and N fertilization levels on growth and yield of two wheat varieties (Triticum aestivum L.). Agriculture Science, 44: 589-601. 10.22124/cjes.2022.5764
Sharaan AN and El-Smie FSA. 1999. Response of wheat varieties to some environmental influences. (1999). Effect of seeding rates and N fertilization levels on growth and yield of two wheat varieties (Triticum aestivum L.). Agriculture Science, 44: 589-601.
Sharma A, Shankhdhar D and Shankhdhar SC. 2014. Growth promotion of the rice genotypes by PGPRs isolated from rice rhizosphere. Journal of Soil Science and Plant Nutrition, 14(2): 505-517. http://dx.doi.org/10.4067/S0718-95162014005000040.
Smith SE and Read DJ. 2008. Mycorrhizal Symbiosis, third ed. Academic Press, London, UK. 47.
Tilman D, Cassman KG, Matson PA, Naylor R and Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature, 418: 671-677. https://doi.org/10.1038/nature01014
Vaid SK, Kumar B, Sharma A, Shukla AK and Srivastava PC. 2014. Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. Journal of Soil Science and Plant Nutrition, 14(4): 889-910.
Vessey JK. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2): 571-586.
Yaghoubi Khanghahi M, Ricciuti P, Allegretta I, Terzano R and Crecchio C. 2018. Solubilization of insoluble zinc compounds by zinc solubilizing bacteria (ZSB) and optimization of their growth conditions. Environmental Science and Pollution Research, 25: 25862-25868. https://doi.org/10.1007/s11356-018-2638-2
Zad Behtouei M, Seyed Sharifi R and Khalilzadeh R. 2019. Effect of nitrogen and biofertilizers on yield, nitrogen use efficiency and some morpho physiological traits of rice (Oryza sativa L.). Cereal Research,8(4): 409-421. (In Persian) 10.22124/c.2019.10772.1407
Zorb C, Senbayram M and Peiter E. 2014. Potassium in agriculture-status and perspectives. Journal of Plant Physiology, 171: 656-669. https://doi.org/10.1016/j.jplph.2013.08.008