تأثیر مصرف توأم بیوچار و فسفر بر رشد و تغذیه کلزا در یک خاک لوم قلیایی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

اهداف: این تحقیق با هدف بررسی تأثیر برهمکنش فسفر و بیوچار حاصل از کاه ‌گندم پیرولیز شده در دمای 300 درجه سلسیوس بر رشد و جذب عناصر غذایی پرمصرف اوّلیه توسط گیاه کلزا (Brassica napus L.) رقم هایولا 308 در یک خاک لوم قلیایی در شرایط گلخانهای انجام شد.
مواد و روش‌ها: این آزمایش به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا گردید. فاکتورهای آزمایش شامل ماده‌ آلی در پنج سطح (صفر، 20 و 40 گرم بر کیلوگرم خاک از دو منبع کاه گندم و بیوچار حاصل از آن) و فسفر در سه سطح (صفر، 20 و 40 میلیگرم فسفر بر‍ کیلوگرم خاک از منبع سوپرفسفات تریپل) بودند. قبل از برداشت گیاهان شاخص کلروفیل برگ اندازه‌گیری شد. بعد از برداشت گیاه نیز وزن‌ خشک شاخساره و ریشه، مقدار روغن دانه و غلظت عناصر نیتروژن، فسفر و پتاسیم در شاخساره گیاه کلزا اندازه‌گیری شدند.
یافته‌ها: مصرف بیوچار و کود فسفر شاخص‌ کلروفیل برگ، وزن‌ خشک شاخساره و ریشه و مقدار روغن دانه را نسبت به شاهد به‌طور معناداری افزایش داد. همچنین، مصرف توأم بیوچار و فسفر باعث افزایش غلظت فسفر و پتاسیم شاخساره نسبت به شاهد شد. مصرف توأم دو درصد بیوچار و 20 میلی‌گرم فسفر بر کیلوگرم خاک منجربه تولید ماده خشک شاخساره معادل مصرف به تنهایی 40 میلی‌گرم فسفر بر کیلوگرم خاک شد.
نتیجه گیری: مصرف بیوچار حاصل از کاه ‌گندم پیرولیز شده در 300 درجه سلسیوس به میزان دو درصد در یک خاک لوم قلیایی منجربه بهبود رشد گیاه کلزا و کاهش مصرف فسفر شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effects of Biochar and Phosphorus on rapeseed (Brassica napus L.) Dry Matter, Oil content and some Nutrient Uptake in an Alkaline Loamy Soil in Greenhouse Conditions

نویسندگان [English]

  • Soheil Salimi tarazoj
  • Adel Reyhanitabar
  • Nosratollah Najafi
Soil Science Department, Faculty of Agriculture,University of Tabriz,Tabriz,Iran
چکیده [English]

Background & Objective: In this research, the effects of combined application of biochar pyrolysed at 300˚C and phosphorous (P) fertilizer on growth and primary macronutrients uptake by rapeseed (Brassica napus L.), Hyola 308 cultivar were studied in an alkaline loamy soil.
 Materials &Methods: A factorial experiment was done in a completely randomized design with three replicates. The factors were organic matter at two sources (biochar and wheat straw) and three levels (0, 20 and 40 g kg-1) and P at three levels (0, 20, and 40 mg kg-1 as triple superphosphate). Before the plants harvesting, leaf chlorophyll index was measured. After the plant, harvesting, dry weights of shoot and root, seed oil content, the concentrations of nitrogen (N), P, and potassium (K) were determined.
 Results: Application of phosphorous fertilizer and biochar significantly increased leaf chlorophyll index, dry weights of shoot and root and seed oil content compared to the control. However, the application of wheat straw resulted in a decrease in these characteristics compared to the control treatment. In addition, dual application of biochar and phosphorous increased shoot concentrations of phosphorous and potassium.  The combined application of 2% biochar and 20 mg P per kg of soil resulted in the production of dry matter of the rapeseed shoot equivalent to the application of 40 mg P per kg of soil alone. Also, the combined application of wheat straw and phosphorus reduced shoot nitrogen concentration compared to the control treatment, but at the same time increased shoot phosphorus and potassium concentrations compared to the control treatment.
Conclusion: The application of biochar obtained from pyrolysis of wheat straw at 300 °C at 2% level in an alkaline loam soil improved rapeseed plant growth and led to a decrease in the consumption of P fertilizer. In all the characteristics measured in this research, the performance of biochar was better than the initial biomass, i.e. wheat straw.

کلیدواژه‌ها [English]

  • Biomass
  • Organic Matter
  • Pyrolysis
  • Rapeseed
  • Wheat Straw
Alburquerque JA, Salazar P, Barrón V, Torrent J, del Campillo MdC, Gallardo A and Villar R. 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33: 475-484. https://doi.org/10.1007/s13593-012-0128-3
Amin AE-EAZ. 2018. Phosphorus dynamics and corn growth under applications of corn stalks biochar in a clay soil. Arabian Journal of Geosciences, 11: 379. https://doi.org/10.1007/s12517-018-3719-8
Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA and Sherlock RR. 2011. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54: 309-320. https://doi.org/10.1016/j.pedobi.2011.07.005
Anonymous. 2021. Https://www.statista.com/statistics/1288257/global-consumption-of-phosphate-fertilizer.
Atkinson CJ, Fitzgerald JD and Hipps NA. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337: 1-18. https://doi.org/10.1007/s11104-010-0464-5
Brennan A, Jiménez EM, Puschenreiter M, Alburquerque JA and Switzer C. 2014. Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant and Soil, 379: 351-360. https://doi.org/10.1007/s11104-014-2074-0
Carter S, Shackley S, Sohi S, Suy TB and Haefele S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3: 404-418. https://doi.org/10.3390/agronomy3020404
Chan KY, Van Zwieten L, Meszaros I, Downie A and Joseph S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45: 629-634. https://doi.org/10.1071/SR07109
DeLuca TH, Gundale MJ, MacKenzie MD and Jones DL. 2015. Biochar effects on soil nutrient transformations. Biochar for environmental management. Science, Technology and Implementation, 2: 421-454. https://doi.org/10.4324/9780203762264
Dong X, Ma LQ and Li Y. 2011. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190: 909-915. https://doi.org/10.1016/j.jhazmat.2011.04.008
Frišták V and Soja G. 2015. Effect of wood-based biochar and sewage sludge amendments for soil phosphorus availability. Nova Biotechnologica et Chimica, 14: 104-115. https://doi.org/10.1515/nbec-2015-0020
Gee GW and Bauder JW. 1986. Particle size analysis, hydrometer methods. Pp. 383-411. In: Sparks DL (eds). Methods of Soil Analysis: Part 1 Physical and mineralogical methods, Inc: Madison.‏ https://doi.org/10.2136/sssabookser5.1.2ed.c15
Grant C and Bailey L. 1993. Fertility management in canola production. Canadian Journal of Plant Science. 73: 651-670. https://doi.org/10.4141/cjps93-087
Hoseini Y, Homaee M, Karimian N and Saadat S. 2009. The effects of phosphorus and salinity on growth, nutrient concentrations, and water use efficiency in canola (Brassica napus L.). Journal of Agricultural Research, 8: 1-18. (In Persian). https://sid.ir/paper/84857/en
Hu Y, Ye X, Shi L, Duan H and Xu F. 2010. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply. Journal of Plant Nutrition. 33: 889-901. https://doi.org/10.1080/01904161003658239
Jones JB. 2001. Laboratory guide for conducting soil tests and plant analysis: CRC press, Boca Raton, FL.
Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia C, Hook J, Van Zwieten L, Kimber S, Cowie A and Singh B. 2010. An investigation into the reactions of biochar in soil. Soil Research, 48: 501-515. https://doi.org/10.1071/SR10009
Lehmann J and Joseph S. 2024. Biochar for Environmental Management: Science, Technology and Implementation. Taylor and Francis.
Lehmann J, Pereira da Silva J, Steiner C, Nehls T, Zech W and Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249: 343-357.  https://doi.org/10.1023/A:1022833116184
Lickfett T, Matthäus B, Velasco L and Möllers C. 1999. Seed yield, oil and phytate concentration in the seeds of two oilseed rape cultivars as affected by different phosphorus supply. European Journal of Agronomy, 11: 293-299. https://doi.org/10.1016/S1161-0301(99)00038-6
Lindsay WL and Norvell W. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
Lindsay WL, Vlek PL and Chien SH. 1989. Phosphate minerals. Pp. 1089-1130. In: Dixeon JB and Weed SB (eds). Minerals in Soil Environments. 2th Edition. SSSA Book Series No. 1, Madison, WI. USA. https://doi.org/10.2136/sssabookser1.2ed.c22
Lusiba S, Odhiambo J and Ogola J. 2017. Effect of biochar and phosphorus fertilizer application on soil fertility: soil physical and chemical properties. Archives of Agronomy and Soil Science, 63:477-490.  https://doi.org/10.1080/03650340.2016.1218477
Madiba OF, Solaiman ZM, Carson JK and Murphy DV. 2016. Biochar increases availability and uptake of phosphorus to wheat under leaching conditions. Biology and Fertility of Soils, 52: 439-446. https://doi.org/10.1007/s00374-016-1099-3
Makoto K, Tamai Y, Kim Y and Koike T. 2010. Buried charcoal layer and ectomycorrhizae cooperatively promote the growth of Larix gmelinii seedlings. Plant and Soil, 327:143-152. https://doi.org/10.1007/s11104-009-0040-z
Marschner H. 2011. Mineral Nutrition of Higher Plants. 2th Edition, Academic Press. London.
Mbah C, Njoku C, Okolo C, Attoe E and Osakwe U. 2017. Amelioration of a degraded ultisol with hardwood biochar: Effects on soil physico-chemical properties and yield of cucumber (Cucumis sativus L.). African Journal of Agricultural Research, 12: 1781-1792. https://doi.org 10.5897/AJAR2016. 11654
Molla MS, Akhter M, Maniruzzaman M, Lipi NJ, Rabiul A and Tisam A. 2017.  Response of biochar to plant nutrients and yield of Amaranthus tricolor. International Journal of Innovative Research, 2: 13–17.
Nelson DW and Sommers LE. 1982. Total carbon, organic carbon, and organic matter. Pp: 539-579. In: Page AL, Miller RH and Keeney DR (eds). Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties. SSSA, Madison, WI.  https://doi.org/10.2134/agronmonogr9.2.2ed.c29
Olsen S and Sommers L. 1982. Phosphorus. Pp. 403-430. In: A.L. Page R.H. Miller and D.R. Keeney (eds). Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties. SSSA, Madison, WI.
Park JH, Choppala GK, Bolan NS, Chung JW and Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348: 439-451. https://doi.org/10.1007/s11104-011-0948-y
Prendergast-Miller MT, Duvall M and Sohi SP. 2011. Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil Biology and Biochemistry, 43: 2243-2246. https://doi.org/10.1016/j.soilbio.2011.07.019
Prendergast‐Miller M, Duvall M and Sohi S. 2014. Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science, 65:173-185. https://doi.org/10.1111/ejss.12079
Price G. 2006. Australian Soil Fertility Manual: CSIRO PUBLISHING.
Puga A, Abreu C, Melo L and Beesley L. 2015. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159: 86-93. https://doi.org/10.1016/j.jenvman.2015.05.036
Rajabi H, Safarzadeh Shirazi S and Ronaghi A. 2017. Effect of pistachio residue biochar prepared at two different temperatures and different nitrogen and phosphorus levels on some macronutrients concentration and spinach growth. Journal of Water and Soil, 31: 557-569. (In Persian). https://doi.org/10.1016/j.jenvman.2015.05.036
Rhoades J. 1996. Salinity: electrical conductivity and total dissolved solids. Pp. 417-435. In: Sparks DL (eds). Methods of soil analysis, Part 3. Chemical methods. SSSA, Madison, WI. https://doi.org/10.2136/sssabookser5.3.c14
Shahbazi K and Besharati H. 2013. Overview of agricultural soil fertility status of Iran. Land Management Journal, 1: 1-15. (In Persian).
Shu L, Schneider P, Jegatheesan V and Johnson J. 2006. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology, 97: 2211-2216. https://doi.org/10.1016/j.biortech.2005.11.005
Singh B, Camps-Arbestain M and Lehmann J. 2017. Biochar: A guide to analytical methods. Csiro Publishing.
Song W and Guo M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94: 138-145. https://doi.org/10.1016/j.jaap.2011.11.018
Sun C, Chen X, Cao M, Li M and Zhang Y. 2017. Growth and metabolic responses of maize roots to straw biochar application at different rates. Plant and Soil, 416: 487-502. https://doi.org/10.1007/s11104-017-3229-6
Tavajjoh M, Karimian N, Ronaghi A, Yasrebi J, Hamidi R and Olama V. 2016. Yield, yield components and seed quality of two rapeseed cultivars as affected by different levels of phosphorus and boron under greenhouse conditions. Journal of Science and Technology of Greenhouse Culture, 6: 99-113. (In Persian). https://doi.org/10.18869/acadpub.ejgcst.6.4.99
Thomas GW. 1996. Soil pH and soil acidity. Pp. 475-490. In: Sparks DL (eds). Methods of Soil Analysis: Part 3. Chemical methods. SSSA, Madison WI.
Wang T, Camps-Arbestain M and Hedley M. 2014. The fate of phosphorus of ash-rich biochars in a soil-plant system. Plant and Soil, 375: 61-74. https://doi.org/10.1007/s11104-013-1938-z
Wang T, Camps-Arbestain M, Hedley M and Bishop P. 2012. Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil, 357: 173-187. https://doi.org/10.1007/s11104-012-1131-9
Yuan J-H, Xu R-K and Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102: 3488-3497. https://doi.org/10.1016/j.biortech.2010.11.018
 Zolfi Bavariani M, Ronaghi A, Karimian N, Yasrebi J and Ghasemi R. 2017. Influence of biochars prepared from poultry manure on phosphorus availability and recovery in a calcareous soil. JWSS-Isfahan University of Technology, 21: 23-35. (In Persian). https://doi.org/10.18869/acadpub.jstnar.21.1.23