تاثیر سه شدت نور و دی‌اکسیدکربن بر خصوصیات رشدی و بیوشیمیایی ریحان (Ocimum basilicum) در شرایط آبکشت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تبریز دانشکده کشاورزی گروه علوم باغبانی

2 1- دانشجوی دکتری، گروه باغبانی، دانشگاه تبریز، تبریز، ایران

3 عضو هیئت علمی گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز

4 گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز

10.22034/saps.2024.58270.3105

چکیده

مقدمه و اهداف: ریحان یکی از مهم‌ترین گیاهان متعلق به خانواده نعناعیان است امروزه به‌خوبی اثبات شده است که دی‌اکسیدکربن نقش مهمی را در رشد محصولات کشاورزی بازی می‌کند و  نور منبع انرژی گیاه است. نور و دی‌اکسیدکربن از عوامل مهم محیطی قابل تنظیم در تولید محصولات گلخانه ای هستند. در این تحقیق، تاثیر غلظت-های مختلف دی‌اکسیدکربن و شدت‌های مختلف نور بر خصوصیات رشدی گیاه دارویی ریحان  در شرایط کشت هیدروپونیک به منظور رسیدن به حداقل زمان ممکن برای تولید گیاه با اندازه معین بررسی  شد.   هدف اصلی این تحقیق افزایش کمیت و کیفیت در ریحان همچنین بررسی تأثیر دی اکسیدکربن و نور مصنوعی بر خصوصیات رشد و نموی گیاه ریحان بررسی کارایی جذب عناصر و بررسی تأثیر هم‌زمان دی اکسیدکربن و نور مصنوعی بر بهبود خصوصیات رشدی بود
 
مواد و روش­ها: این پژوهش در آزمایشگاه فیزیولوژی سبزی دانشگاه تبریز انجام شد،این آزمایش به صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار انجام شد. فاکتور اول نور در سه سطح 78، 156 و 234 میکرو مول بر متر مربع در ثانیه که لامپ‌ها با کارایی مصرف بالا و از نوع ال ای دی بود و در ارتفاع 40 سانتی‌متری بالای گیاه قرار گرفت. و فاکتور دوم دی‌اکسیدکربن در 3 سطح دی‌اکسیدکربن محیط، دی‌اکسیدکربن 750 میلی‌گرم در لیتر و 1500میلیگرم در لیتر می‌باشد که از منبع دی‌اکسیدکربن خالص خوراکی با خلوص 99.99 درصد استفاده شد برای تزریق از دو سیلندر 4 لیتری، یک شیر برقی و ریگلاتور تنظیم همچنین سنسور سنجش میزان دی‌اکسیدکربن استفاده شد که ساخت شرکت یونی تی تایوان بوده به منظور تهیه نشاء، بذرهای ریحان رقم جنووز (Genovese) در سینی‌های کشت (دارای سلول‌های جداگانه) حاوی پیت و پرلایت با نسبت 60:40 کشت با حجم 90 سی سی شد و جهت تغذیه نشاءها محلول غذایی هوگلند کامل از پایان هفته اول کشت هر سه روز یک‌بار مورد استفاده قرار گرفت. دمای روز 26 درجه سلسیوس و دمای شب 21 درجه سلسیوس بود. میزان رطوبت متوسط محیط 65 درصد و گردش هوای درون اتاق به صورت مداوم انجام شد. در این آزمایش  وزن تر و خشک گیاه (بیوماس)، شاخص سطح برگ، محتوی کلروفیل، کارتنوئید، جذب نیتروژن، نیترات و شاخص سطح برگ مورد بررسی قرار گرفت.
 
یافته­ها: نشان داد که افزایش شدت نور و غلظت دی اکسید کربن منجر به افزایش معنی دار در سطح برگ، ارتفاع بوته، وزن تر و خشک شاخساره (بیوماس اندام هوایی)، تعداد برگ، محتوی کلروفیل، کارتنوئید، میزان تجمع نیترات، درصد مواد جامد محلول و جذب  نیتروژن شد. به این صورت که در تیمار 1500 میلی‌گرم در لیتر دی­اکسیدکربن همراه 234 میکرو مول بر متر مربع در ثانیه نور مقدار وزن خشک اندام هوایی ، وزن­تراندام هوایی، کارتنوئید، کلروفیل،  ارتفاع گیاه، سطح برگ، تعداد برگ و نیتروژن به ترتیب280، 100، 160، 123، 100، 163، 128، 24 درصد افزایش یافت. و در تیمار نور 156 میکرو مول بر متر مربع در ثانیه  و دی­اکسیدکربن 1500 میلی‌گرم در لیتر  مقدار مواد جامد محلول 76 درصد افزایش یافت. همچنین در نور 234 میکرو مول بر متر مربع در ثانیه  و دی­اکسیدکربن 500 میلی‌گرم در لیتر  نیترات 115 درصد افزایش یافت.
 
نتیجه‌گیری: نتایج این مطالعه نشان داد که تزریق دی‌اکسیدکربن و نور روی رشد گیاه ریحان اثر مثبت داشته و بهترین نتایج با شدت 234 میکرو مول بر متر مربع در ثانیه  و دی‌اکسید کربن  1500 میلی‌گرم رخ داد. البته درتیمارشدت نور 156 نیز نتایج قابل قبول بدست آمد، که تفاوت زیادی با گیاهان شاهد داشت. دی‌اکسید کربن برای ایجاد اثر مثبت نیازمند فراهم بودن شرایط نوری هست در حالی که نور برای ایجاد اثر مثبت نیازمند دی‌اکسید کربن نبود لذابه منظور رسیدن به بالاترین کیفیت و کمیت تیمار نور 156 و 234 میکرو مول بر متر مربع در ثانیه  همراه با 1500   میلی­گرم بر لیتر دی­اکسیدکربن بهترین اثر را خواهد داشت.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of three light intensities and CO2 concentration on growth and biochemical characteristics of basil (Ocimum basilicum) in hydroponic culture

نویسندگان [English]

  • Sahebali Bolandnazar 1
  • Ghaesm Shekari 2
  • Saiedeh Alizadeh Salteh 3
  • Jafar Hajillo 4
1 Department of Horticulture, Faculty of Agriculture, University of Tabriz
2 1- PhD student, Department of Horticulture, Tabriz University, Tabriz, Iran
3 Department of Horticulture, Faculty of Agriculture, University of Tabriz, Iran
4
چکیده [English]

Background and Objectives: Basil is one of the most important plants belonging to the mint family. Today, it has been well proven that carbon dioxide plays an important role in the growth of agricultural products and light is the source of energy for the plant. Light and carbon dioxide are important adjustable environmental factors in the production of greenhouse products. In this study, the effect of different concentrations of carbon dioxide and different light intensities on the growth characteristics of the medicinal plant basil under hydroponic cultivation conditions was investigated in order to achieve the minimum possible time to produce a plant of a certain size. The main objective of this study was to increase the quantity and quality of basil, as well as to investigate the effect of carbon dioxide and artificial light on the growth and development characteristics of basil plants, to investigate the efficiency of element absorption, and to investigate the simultaneous effect of carbon dioxide and artificial light on improving growth characteristics.
 
Materials and Methods: This research was conducted in the Vegetable Physiology Laboratory of Tabriz University. This experiment was carried out as a factorial experiment in a randomized complete block design with three replications. The first factor was light at three levels of 78, 156 and 234 micromoles/m2/s, with high-efficiency LED lamps placed at a height of 40 cm above the plant. And the second factor is carbon dioxide at 3 levels of ambient carbon dioxide, carbon dioxide 750 mg/L and 1500 mg/L, which was a source of pure edible carbon dioxide with a purity of 99.99%. Two 4-liter cylinders, a solenoid valve and a regulator were used for injection, as well as a carbon dioxide sensor manufactured by Unity Taiwan. In order to prepare seedlings, basil seeds of the Genovese variety were sown in cultivation trays (with separate cells) containing peat and perlite in a ratio of 60:40 with a volume of 90 cc. To feed the seedlings, complete Hoagland nutrient solution was used every three days from the end of the first week of cultivation. The daytime temperature was 26 degrees Celsius and the night temperature was 21 degrees Celsius. The average ambient humidity was 65 percent and the air in the room was continuously circulated. In this experiment, plant fresh and dry weight (biomass), leaf area index, chlorophyll content, carotenoid, nitrogen uptake, nitrate, and leaf area index were examined.
 
Results: The results showed that the increase in light intensity and carbon dioxide concentration led to a significant increase in the leaf area, plant height, shoot fresh and dry weight (shoot biomass), number of leaves, chlorophyll content, carotenoids, nitrate accumulation rate, the percentage of dissolved solids and nitrogen absorption. In this way, in the treatment of 1500 mg/liter of carbon dioxide with 234 μmol/s of light, the amount of dry weight, wet weight, carotenoids, chlorophyll, plant height, surface and number of leaves and nitrogen were increased 280, 100, 160, 123, 100, 163, 128 and 24 % respectively. In the light treatment of 156 μmol/s and carbon dioxide 1500 mg/liter, the amount of dissolved solids increased by 76%. Also, in the light of 234 μmol/s and carbon dioxide of 500 mg/liter, nitrate increased by 115%.
 
Conclusion: The results of this study showed that the injection of carbon dioxide and light had a positive effect on the growth of basil plants, and the best results occurred with an intensity of 234 micromoles per square meter per second and 1500 mg of carbon dioxide. Of course, acceptable results were also obtained in the treatment of light intensity of 156, which was very different from the control plants. Carbon dioxide requires the availability of light conditions to create a positive effect, while light did not require carbon dioxide to create a positive effect. Therefore, in order to achieve the highest quality and quantity, the treatment of light of 156 and 234 micromoles per square meter per second along with 1500 mg/liter of carbon dioxide will have the best effect.

کلیدواژه‌ها [English]

  • carbon dioxide
  • artificial light
  • basil
  • hydroponics
  • dry matter
  1. Ainsworth E and A Rogers. 2007. The response of photosynthesis and stomatal conductance to rising   [CO2]: mechanisms and environmental interactions. Plant cell & environment, 30(3):258-270.  oi.org/10.1111/j.1365-3040.2007.01641. x.

    Al Jaouni S, Saleh A, Wadaan M, Hozzein W, Selim S and Abdelgavad H. 2018. Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity. Journal of plant physiology, 224: 121-131. doi: 10.1016/j.jplph.2018.03.016.

    Amaki W and Kunii M. 2015. Effects of light quality on the flowering responses in Kalanchoe  blossfeldiana. Acta Horticuturae, 1107: 279-284. doi.org/10.17660/ActaHortic.2015.1107.38

    Barickman T, Adhikari B, Sehgal A, Walne C, Reddy K, and Gao W. 2021. Drought and Elevated CarbonDioxide Impact the Morphophysiological Profile of Basil (Ocimum basilicum L.). Crops, 1(3): 118-128. doi.org/10.3390/crops1030012.

    Baslam M, Morales F, Garmendia I and Goicoechea N. 2013. Nutritional quality of outer and inner leaves of

     green and red pigmented lettuces (Lactuca sativa L.) consumed as salads. Scientia Horticulturae, 151: 103–111 doi10.1016/j.scienta.2012.12.023.

    Bazzaz F. 1990. The Response of Natural Ecosystems to the Rising Global CO2 Levels. Annual Review of Ecology and Systematics. Annual Reviews, 21: 167-196. doi: 10.1146/annurev.es.21.110190.001123.

    Bremner J. 1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of AgriculturalScience, 55(1): 11-33.doi: 10.1017/S0021859600021572.

    Brown A, Slabas A and Rafferty J. 2010. Fatty acid biosynthesis in plants metabolic pathways, structure        and organization. Lipids Photosynth, 30: 11–34. doi: 10.1007/978-90-481-2863-1_2.

    Bunce J.2004. Carbon dioxide effects on stomatal responses to the environment and water use by crops  under field conditions. Journal of American Society for Horticultural Science.140:1–10.doi: 10.21273/JASHS.115.3.364.

    Desjardins Y, Gosselin A and Lamnarre M. 1990.  Growth of transplants and in vitro-cultured clones of

           asparagus in response to CO2 enrichment and supplemental lighting. Journal of American Society for Horticultural Science.115:364- 368. doi: 10.21273/JASHS.115.3.364.

    Dong J, Gruda N, Lam S, Li X and Duan Z. 2018. Effects of elevated CO2 on nutritional quality of          vegetables: a review. Frontiers in plant science, 9: 924. doi.10.3389/fpls.2018.00924.

    Dou H, Niu G, Gu M, and Masabni J. (2018). Responses of Sweet Basil to Different Daily Light Integrals in Photosynthesis, Morphology, Yield, and Nutritional Quality. HortScience, 53(4), 496-503. Retrieved May 1, 2024, from https://doi.org/10.21273/HORTSCI12785-17.

    Fierro A, Gosselin A and Tremblay N. 1994. Supplemental Carbon Dioxide and Light Improved Tomato       and Pepper Seedling Growth and Yield." HortScience, 29(3): 152-154.       doi:10.21273/HORTSCI.29.3.152.

    Fraszczak  B, Golcz Zawirska A, Wojtasiak R and Janowska B. 2014. Growth rate of sweet basil and lemon

    balm plants grown under fluorescent lamps and LED modules. Acta Scientiarum Polonorum Hortorum Cultus, 13: 3– 13.

    Gillig S, Heinemann R, Hurd G, Pittore K and Powell D. 2008. Response of basil (Ocimum basilicum) to

          increased CO2 levels. E&ES359 Global Climate Change, Johan Varekamp; Wesleyan University:

          Middletown, CT, USA. http://dx.doi.org/10.3390/metabo13010085.

    Hao X and Athanasios P. 1999. Effects of supplemental lighting and cover materials on growth,

           photosynthesis, biomass partitioning, early yield and quality of greenhouse cucumber. Scientia

           Horticulturae, 80(1-2): 1-18. http://dx.doi.org/10.1016/S0304-4238(98)00217-9.

    Hirse T and Bazzaz F. 1996. Trade-off Between Light and Nitrogen-use Efficiency in Canopy

           Photosynthesis. Annals of  Botany, 82: 195–202. http://dx.doi.org/10.1006/anbo.1998.0668.

    Holley J, Mattson N, Ashenafi E and Nyman M. 2022. The Impact of CO2 Enrichment on Biomass,

           Carotenoids, Xanthophyll, and Mineral Content of Lettuce (Lactuca sativa L.). Horticulturae,  8, 820.

    Huang Y, Eglinton G, Ineson P, Bol R and Harkness D. 1999. The effects of nitrogen fertilisation and

             elevated CO2 on the lipid biosynthesis and carbon isotopic discrimination in birch seedlings (Betula

             pendula). Plant Soil, 216(1–2); 35–45. http://dx.doi.org/10.1023/A:1004771431093.

    Hurd R and Thomley J. 1972. An analysis of the growth of young tomato plants in water culture at different

            light integral and C02 concentrations: I. Physiological aspects. Annals of Botany, 38:375-388.

            http://dx.doi.org/10.1093/oxfordjournals.Annals of Botany.a084822.

    Jung D, Kim D, Yoon H, Moon T, Park K and Son J. 2016. Modeling the canopy photosynthetic rate of

            romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying CO2 concentrations and growth

            stages. Horticulture, Environment, and Biotechnology, 57(5): 487-492.

            http://dx.doi.org/10.1007/s13580-016-0103-z.

    Kang HKrishnaKumar SAtulba SSJeong BR and Hwang SJ.2013. Light intensity and photoperiod

            influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant

            factory system. Horticulture, Environment, and Biotechnology, 54(6): 501-509.

            https://doi.org/10.1007/s13580-013-0109-8.

    Larios B, Agüera E, de la Haba P, Pérez-Vicente R and Maldonado J. 2001. A shortterm exposure of

           cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate        

           reductase expression and activity. Planta, 212 (2): 305–312. http://dx.doi.org/10.1007/s004250000395.

    Larsen D, Woltering E, Nicole C and Marcelis L. 2020. Response of Basil Growth and Morphology to Light Intensity and Spectrum in a Vertical Farm. Frontiers in Plant Science. 2020 Dec 4;11:597906. doi: 10.3389/fpls.2020.597906. PMID: 33424894; PMCID: PMC7793858.

    Lea US, Leydecker M, Quilleré I, Meyer C and Lillo C. 2006. Posttranslational regulation of nitrate

           reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation

           has only minor influence. Plant Physiolgy. American. Society. Plant Biology,140(3): 1085–

           1094.doi.org/10.1104/pp.105.074633.

    Li X, Zhang G, Sun B, Zhang S, Zhang Y, Liao Y, Zhou Y, Xia X, Shi K and Yu J. 2013. Stimulated leaf

           dark respiration in tomato in an elevated carbon dioxide atmosphere. Nature Publishing Group Sciences. Reports, 3: 3433. http://dx.doi.org/10.1038/srep03433.

    Liu JX, Zhang DQ, Zhou G, FaivreVuillin B, Deng Q and Wang CL. 2008. CO2 enrichment increases

            nutrient leaching from model forest ecosystems in subtropical China. Biogeosciences Discussions, 5:2679–2706. http://dx.doi.org/10.5194/bgd-5-2679-2008.

    Lotfiomran N, Kohl M and Fromm J. 2016. Interaction effect between elevated CO2 and fertilization on

           biomass, gas exchange and C/N ratio of European beech (Fagus sylvatica L.). Plants, 5(3): 38.

           http://dx.doi.org/10.3390/plants5030038.

    Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A and Stitt M. 2001. Elevated carbon dioxide increases

           nitrate uptake and nitrate reductase activity when Tobacco is growing on nitrate, but increases

           ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium  

            nitrate. Plant Cell Environment, 24 (11): 1119–1137. http://dx.doi.org/10.1046/j.1365-3040.2001.00771.x.

    Morgan JV. 1986. Chemical and environmental control of growth during propagation of tomato plants for

            transplanting. Acta Horticulture, 190:523-530. http://dx.doi.org/10.1016/0304-4238(93)90137-F.

    Mortensen LM and Moe R. 1983. Growth responses of some greenhouse plants to environment. VI. Effect

            of CO2 and artificial light on growth of  Chrysanthemum morfolium Ramat. Scientia Horticulturae,

            19(1/2):141–147.

    Nájera C and Urrestarazu M. 2019. Effect of the Intensity and Spectral Quality of LED Light on Yield and

           Nitrate Accumulation in Vegetables. Hort Science Hortci, 54(10): 1745-

    1. https://doi.org/10.21273/HORTSCI14263-19.

    Nilsen S, Hovland K, Dons C and Sletten SP. 1983. Effect of CO2 enrichment on photosynthesis, growth

          and yield of tomato Scientia Horticuturae. 20: 1-14. https://doi.org/10.1016/0304-4238(83)90106-1.

    Nunes-Nesi A, Fernie AR and Stitt M. 2010. Metabolic and signaling aspects underpinning the regulation

           of plant carbon nitrogen interactions. Molecular Plant, 3 (6): 973–996.

    Pan T, Ding J, Qin G, Wang Y, Xi L, Yang J, Li J, Zhang J and Zou Z. 2019. Interaction of Supplementary     

           Light and CO2 Enrichment Improves Growth, Photosynthesis, Yield, and Quality of Tomato in Autumn

           hrough Spring Greenhouse Production. Hort Science Hortci, 54(2): 246-       252. https://doi.org/10.21273/HORTSCI13709-18.

    Radetsky L, Patel J S and Rea MS. 2020. Continuous and Intermittent Light at Night, Using Red and Blue

           LEDs to Suppress Basil Downy Mildew Sporulation. Hort Science Hortsci, 55(4): 483-        486.  https://doi.org/10.21273/HORTSCI14822-19.

    Radoglou  K M and Jarvis PG. 1990. Effects of CO2 Enrichment on Four Poplar Clones. I. Growth and Leaf

           Anatomy, Annals of  Botany,65(6):  617–626. https://doi.org/10.1093/oxfordjournals.aob.a087978.

    Riachi L and De Maria C. 2015. Peppermint antioxidants revisited. Food Chem. 176,72–81.

    Sage RF, Sharkey TD and Seemann JR. 1989. Acclimation of Photosynthesis to Elevated CO(2) in Five C(3)  Species. Plant Physiolgy, 89(2):590-6. doi: 10.1104/pp.89.2.590.

    Shenping Xu, Xiaoshu Z, Chao L and Qingsheng Ye. 2014. Effects of CO2 enrichment on photosynthesis

          and growth in Gerbera jamesonii Scientia Horticulturae,  177: 77-84.   doi.org/10.1016/j.scienta.2014.07.022.

    Shuyang Z and Van-lersel M. 2017. Far-red light is needed for efficient photochemistry and photosynthesis.

          Journal of Plant Physiology, 209: 115-122. https://doi.org/10.1016/j.jplph.2016.12.004.

    Sipos L,  Boros IF,  Csambalik L,  Székely, G.  Jung A and  Balázs L. 2020.  Horticultural lighting system

          optimalization: a review Scientia Horticulturae, 273: 109631. doi.10.1016/j.scienta.2020.109631.

    Tabatabaie SJ. 2013. Principles of mineral nutrition of plants.Tabriz University Press, 562p.(In Persian)

    Walters K, Lopez R and Behe B. 2021. Leveraging controlled-environment agriculture to increase key basil

          terpenoid and phenylpropanoid concentrations: The effects of radiation intensity and CO2 concentration

          on consumer preference. Frontiers in Plant Science, 11: 598519.

          https://doi.org/10.3389/fpls.2020.598519.

    Wang J, Liu X, Zhang X, Li L, Lam SK and Pan G. 2019. Changes in plant C, N and P ratios under

          elevated [CO 2] and canopy warming in a rice-winter wheat rotation system. Scientifc reports, 9(1): 1-9.

          doi.org/10.1038/s41598-019-41944-1.

    Wang SY, Bunce JA and Maas L. 2003. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. Journal of Agricultural and Food Chemistry, 51 (15): 4315–4320. doi.org/10.1021/jf021172d.

    XiaoYing L, ShiRong G, ZhiGang X, Xue Lei J and Tezuka T. 2011. Regulation of Chloroplast       Ultrastructure, Cross-section Anatomy of Leaves, and Morphology of Stomata of Cherry Tomato by

          Different Light Irradiations of Light-emitting Diodes. HortScience, 46(2): 217-221. https://doi.org/10.21273/HORTSCI.46.2.217.

    Yelle S, Richard C, Beeson Jr, Trudel MJ and Gosselin A. 1990. Duration of CO2 Enrichment

    Influences Growth, Yield, and Gas Exchange of Two Tomato Species. Horticultural science, 115(1):52-57. doi:  10.1021/jf021172d.