اثر سطوح نیتروژن و تراکم بوته بر عملکرد دانه و روغن کاملینا (Camelina Sativa L.) در خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 اکولوژی گیاهان زراعی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران.

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

3 گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

4 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز

10.22034/saps.2024.61122.3203

چکیده

مقدمه و اهداف: کاملینا  گیاهی روغنی است که علاوه بر مصارف خوراکی و درمان در صنعت نیز به عنوان سوخت زیستی و مواد آرایشی و بهداشتی کاربرد دارد. این گیاه در مقایسه با سایر دانه­­های روغنی نیاز کمی به آب، کود و آفت­کش دارد و امکان قرار گرفتن آن در تناوب با غلات وجود دارد. در تولید کاملینا مدیریت عناصر غذایی و تراکم بهینه کاشت از عوامل مهمی است که بر رشد و عملکرد تاثیر می­گذارد. با توجه به پتانسیل بالای کشت کاملینا در خوزستان این پژوهش به منظور بررسی اثر مقادیر مختلف کود نیتروژن و تراکم بوته بر عملکرد دانه و اجزای عملکرد کاملینا در خوزستان انجام گردید.
 
مواد و روش ها: آزمایش در سال زراعی 1401-1400 به صورت کرت­های خرد شده و در قالب طرح پایه بلوک­های کامل تصادفی با سه تکرار در ایستگاه تحقیقات کشاورزی بهبهان انجام­شد. نیتروژن در پنج سطح صفر،50، ،100 ،150 و 200 کیلوگرم در هکتار نیتروژن خالص در کرت­های اصلی و تراکم بوته با چهار سطح 200، 400،300 و 500 بوته در متر مربع در کرت­های فرعی قرار گرفتند. میزان نیتروژن مصرفی هر کرت بر اساس تیمارهای مورد نظر از منبع اوره محاسبه و یک سوم از آن در ابتدای کشت و مابقی به صورت سرک در دو مرحله استفاده گردید. ابعاد کرت‌ها 5/1×5/2 متـر، فاصله بین کرت‌ها­ی اصلی یک­متر و فاصله بین بلوک‌ها دو متر در نظـر گرفتـه شـده و هـر یک از کـرت‌ها شـامل ده خـط کاشت بود.
 
یافته­ها: بیشترین مقادیر عملکرد دانه و روغن به ترتیب 7/2442 و 4/857 کیلوگرم در هکتار از تیمار مصرف 150 کیلوگرم در هکتار نیتروژن و تراکم 300 بوته در متر مربع بدست­آمد. در تراکم­های 200 و 300 بوته در متر مربع با افزایش نیتروژن تا سطح 150 کیلوگرم در هکتار عملکرد دانه افزایش و­سپس کاهش یافت در حالی که در تراکم­های 400 و 500 بوته در متر مربع با افزایش مصرف نیتروژن عملکرد به صورت خطی افزایش یافت.
 
نتیجه گیری: افزایش میزان مصرف نیتروژن تا سطح 150 کیلوگرم در هکتار موجب افزایش عملکرد دانه و روغن و اجزای عملکرد کاملینا در آزمایش حاضر شد. همچنین تراکم 300 بوته در متر مربع باعث افزایش عملکرد دانه و روغن شد.  بنابراین، برای دستیابی به تولید بیشترین عملکرد دانه و روغن در کاملینا می­توان از تراکم 300 بوته در متر مربع و مصرف 150 کیلوگرم در هکتار کود نیتروژن برای رقم سهیل در شرایط آب و هوایی خوزستان استفاده کرد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of nitrogen levels and plant density on grain and oil yield of Camelina in Khuzestan

نویسندگان [English]

  • afsaneh shojaei 1
  • Aydin Khodaei joghan 2
  • sayed ataolah siadat 2
  • danial kahrizi 3
  • abdolali gilani 4
1 Dept. of Plant Production and Genetics Engineering, Agriculture Faculty, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
2 Dept. of Plant Production and Genetics Engineering, Agriculture Faculty, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
3 Dept, Faculty of Agriculture, Tarbiat Modares University, Tehran, Tehran, Iran.
4 Dept, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Ahwaz, Iran.
چکیده [English]

Baclgrpimd and Objectives: Camelina is an oilseed plant that, in addition to food and medicinal uses, is also utilized in industry as biofuel and in cosmetics and personal care products. Compared to other oilseeds, it has low water, fertilizer, and pesticide requirements and can be incorporated into crop rotations with cereals. In camelina production, nutrient management and optimal planting density are key factors influencing growth and yield. Given the high potential for camelina cultivation in Khuzestan, this study was conducted to investigate the effects of different nitrogen fertilizer levels and plant density on grain yield and yield components of camelina in Khuzestan.
 
Materials and Methods: The experiment was carried out as a split plot design based on randomized complete block design with four replications at the Behbahan agriculture research station during 2021-2022 growing season. Nitrogen was applied at five levels (0, 50, 100, 150, and 200 kg. ha-1 of pure nitrogen) in the main plots, and planting density was set at four levels (200, 400, 300, and 500 plants per square meter) in the sub-plots. The amount of nitrogen applied to each plot was calculated based on the specified treatments using urea as the source. One-third of the total amount was applied at the beginning of cultivation, and the remainder was applied in two stages. The dimensions of the plots were 1.5 × 2.5 meters, with a spacing of 1 meter between main plots and 2 meters between blocks. Each plot consisted of ten planting rows.
 
Results: The highest grain yield (2442 kg. ha-1) and oil yield (857 kg. ha-1) were obtained with the application of 150 kg. ha-1 of nitrogen and 300 plants per square meter. at planting densities of 200 and 300 plants per square meter, with increasing nitrogen up to 150 kg.ha-1, the grain yield increased and then decreased, while in planting densities of 400 and 500 plants per square meter, the yield increased linearly with increasing nitrogen application.
 
Conclusion: Applying nitrogen at rates up to 150 kg. ha⁻¹ led to an increase in Camelina grain yield. A density of 300 plants per square meter by provided favorable conditions for plant growth and development, will lead to increase grain and oil yield. Therefore, considering environmental conservation and resource management, a planting density of 300 plants per square meter and the application of 150 kg.ha-1 nitrogen can be utilized to achieve the highest grain and oil yields of camelina.                                 
 

کلیدواژه‌ها [English]

  • Fertilizer
  • Grain Oil Content
  • Oil Seed Plant
  • Plant Number
  • Yield Components
Agegenehu M and Honermeier B. 1997. Effects of seeding rates and nitrogen fertilization on seed yield   seed quality and yield components of false flax. Die Bodenkultur, 48(1): 15-21.                              
  Balasubramanian V, Morales AC, Cruz RT, Thiyagarajian TM, Nagarajan R, Babu, M, Abdulrachman S and Hai, LH. 2000. Adaptation of the chlorophyll meter (SPAD) technology for real-time N management in rice. Aeview, Intetnational Rice Research, Notes, 25: 4-8.
  Baloch AW, Soomro AM, Javed MA, Ahmed M, Bughio HR, Bughio MS and Mastoi, N.N. 2002. Optimum plant density for high yield in rice (Oryza sativa L.). Asian Journal of Plant Sciences, 1: 25-27.
  Budin JT, Breene WM and Putnam, DH. 1995. Some compositional properties of camelina (Camelina sativa L. Crantz.) seeds and oils. Journal of American Oil Chemists Society, 72: 309-315. https://doi.org/10.1007/BF02541088       
  Butkute B, Sidlauskas G and Brazaukiene, I. 2006. Seed yield and quality of winter oilseed rape as affected by nitrogen rates, sowing time, and fungicide application. Communications in Soil Science and Plant Analysis, 37: 2725- 2744.  https://doi.org/10.1080/00103620600819600
  Cavero J, Gil Ortega R and Gutierrez, M. 2001. Plant density affects yield, yield components, and color of direct-grained paprika pepper. Horticultural Science, 36(1): 76-79. https://doi.org/10.21273/HORTSCI.36.1.76
Crowley JG and Fröhlich A. 1998. Factors Affecting the Composition and Use of Camelina. Teagasc. Project Report No. 4319.
Czarnik M, Jarecki W and Bobrecka-Jamro, D. 2016. Reakcja ozimych odmian lnianki siewnej  (Camelina sativa L.) na zróznicowane _ nawozenie azotem (response of winter varieties of   camelina (Camelina sativa L.) to varied nitrogen fertilization). Acta Agrophysica, 23 (4): 545–556 (in Polish). https://www.researchgate.net/publication/311743500
Del Moro SK, Sullivan DM and Horneck, DA. 2017. Ammonia volatilization from broadcast urea and    alternative dry nitrogen fertilizers. Soil Science Society of America Journal, 81: 1629– 1639.    https://doi.org/10.2136/sssaj2017.06.0181.  ‏
Eric N J, Kevin FH, Klein-Gebbinck3 LL, Cecil Vy, Yantai GL, Hall6 Keith TS, Phelps7 and Blaine, D. 2010. Optimizing Seeding Rates and Plant densities for Camelina sativa in western Canada. A field     spread, Journal of Food Science.
Javadi H, Rizvani Moghadam P, Thagha Al-Islami M J and Mousavi, G. 2017. Investigating the effect of density and planting date on yield and functional components of purslane. Agricultural Research of Iran, 15(1): 113-123. (In Persian with English Abstract). .
 Jankowski KJ, Sokólski M and Kordan, B. 2019. Camelina: Yield and quality response to nitrogen and sulfur fertilization in Poland. Industrial Crops and Products, 141: https://doi.org/10.1016/j.indcrop.2019.111776.
 Kahrizi D. 2018. Soheil cultivar report of Camelina plant for cultivation in different regions of the country. Registration and certification of seeds and seedlings. Spring and summer, 24-27. (In Persian with English Abstract). .  
 Malhi SS, Johnson EN, Hall LM, May WE, Phelps S and Nybo, B. 2012. Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa. Canadian Journal of Soil Science, 94(1): 35-47.  https://doi.org/10.4141/cjss2012-086 
 Manore D and Ashenaf Y. 2019. "Evaluating growth, seed yield and yield attributes of Camelina (Camelina sativa L) in response to seeding rate and nitrogen fertilizer levels under irrigation condition, southern Ethiopia." Agriculture Forestry and Fisheries, 8(2): 31-35. https://doi.org/10.11648/j.aff.20190802.11  
 Morditalavat M, Siadat S, Nadian H and Fathi, Gh. 2007. Response of canola grain and oil yields, oil and protein contents to different levels of nitrogen and boron fertilizers in Ahvaz region. Iranian Journal of Crop Sciences, 9 (3): 213-224. (in Persian with English abstract). https://agrobreedjournal.ir/article-1-258-en.html
 Ning Ch, Gao PD, Wang BQ, Lin WP, Jiang NH and Cal, LZ. 2017. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of integrative agriculture, 16(8): 1819-1831.https://doi.org/10.1016/S2095-3119(16)61476-4
Obour KA, Sintim YH, Obeng E and Jeliazkov, DV. 2015. Oilseed camelina (Camelina sativa L. Crantz): Production systems, prospects and challenges in the USA great plains. Advances in Plants and Agriculture Research, 2(2): 1-10. https://doi.org/10.15406/apar.2015.02.00043          
    Porim. 1995. Porim Test Methods. Palm Oil Research Institute of Malaysia, p. 72-75, 40-42, 92-101, 33-36, 37- 39, 64-65. Minisry of Primary Industries, Malaysia.
   Parwada C, Mandumbu R, Tibugari H, Badze D and Mhungu, S. 2020. Effect of soil fertility amendment, planting density and growing season on Chenopodium quinoa Wild (Quinoa) in Zimbabwe. Cogent Food & Agriculture, 6: 179-193. https://doi.org/10.1080/23311932.2020.1792668
   Prager A, Munz S, Nkebiwe P, Mast B and Graeff-Honninger, S. 2018. Yield and quality characteristics of different quinoa (Chenopodium quinoa Willd.) cultivars grown under field conditions in Southwestern Germany. Journal of Agronomy and Crop Science, 8 10: 197-216. https://doi.org/10.3390/agronomy8100197
  Raziei Z, Kahrizi D and Rostami–Ahmadvandi, H. 2018. Effects of climate on fatty acid profile in Camelina sativa. Cellular and Molecular Biology, 64: 91 - 96. (In Persian with English Abstract). . https://doi.org/10.14715/cmb/2018.64.5.15
Sabagh A. E , Barutçular C and Saneoka, H. 2016. Role of integrated use of nitrogen fertilizer sources in improving seed quality of canola (Brassica napus L.). Turkish Journal of Agriculture-Food Science and Technology, 4(2): 73-78. https://doi.org/10.24925/turjaf.v4i2.73-78.514
 Șaman O and Özturk Ö.2012. "Effects of different plant densities on the yield and yield components of second crop sesame. 118-123.‏
 Shakeri E, Amini Dehaghi M, Tabatabaei SA and Modares Sanavi, SAM. 2012. Effects of   chemical fertilizer and bio fertilizer on seed yield, its components, and oil and protein percent in sesame varieties. Journal of Agricultural Science, 22(1): 71-85. (In Persian with English Abstract).
. Solis A, Vidal I, Paulino L, Johnson B L and Berti, MT. 2012. Camelina seed yield response to   nitrogen, sulfur, and phosphorus fertilizer in South Central Chile. Industrial Crops and Products, 44:         132-138. https://doi.org/10.1016/j.indcrop.2012.11.005
Son TTN, Diep CN and Giang, TTM. 2006. Effect of Bradyrhizobia and phosphate solubilizing bacteria application on soybean (Glycine max L.) in rotational system in the Mekong delta. Omonrice. 14: 48-57.
Tadayon A, Torabian Sh and Tadayon, M. R. 2013. Effect of plant density on yield and quality of four commercial varieties of flax. Journal of Crops Improvement, 15: 15-26. (In Persian with English Abstract). .  https://doi.org/10.22059/jci.2013.35719
Urbaniak SD, Caldwell CD, Zheljazkov VD, Lada R and Luan, L. 2008. The effect of cultivar and applied nitrogen on the performance of (Camelina sativa L.) in the Maritime Provinces of Canada Canadian journal of plant science, 88(1): 111-119 https://doi.org/10.4141/CJPS07115
Wysocki DJ, Chastain TG, Schillinger WF, Guy SO and Karow, RS. 2013. Camelina: Seed yield response to applied nitrogen and sulfur. Field Crops Research, 145: 60-66. https://doi.org/10.1016/j.fcr.2013.02.009
Yousaf MLX, Zhang Z, Ren T, Cong R, Ata-Ul-Karim ST, Fahad S, Shah AN and Lu, Ji. 2016. Nitrogen fertilizer management for enhancing crop productivity and ni trogen use efficiency in a rice-iil seed rape rotation system in China. Frontiers in Plant Science, 7: 1496. https://doi.org/10.3389/fpls.2016.01496
Zanetti F, Gesch RW, Walia MK, Johnson JMF and Monti, A. 2020. Winter camelina root    characteristics and yield performance under contrasting environmental conditions. Field Crops   Research, 252. https://doi.org/10.1016/j.fcr.2020.107794
Zubr J. 2003. Qualitative variation of Camelina sativa seed from different locations. Industrial Crops and Products, 17.3: 161-169. https://doi.org/10.1016/S0926-6690(02)00091-2