بررسی عملکرد و اجزای عملکرد سویا، نسبت برابری زمین و شاخص‌ رقابتی در کشت مخلوط تاخیری با گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 اگروتکنولوژی (اکولوژی گیاهان زراعی)، گروه آموزشی مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و فناوری کشاورزی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه تولید و ژنتیک گیاهی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 گروه اکوفیزیولوژی گیاهی، گرایش اکولوژی گیاهان زراعی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

4 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی

10.22034/saps.2025.63261.3386

چکیده

مقدمه و اهداف: با توجه به افزایش جمعیت جهان و نیاز به غذا، استفاده از روش‌های سنتی کشاورزی پاسخگوی نیازهای جامعه نیست. کشت مخلوط تأخیری یکی از راه‌های دستیابی به پایداری در کشاورزی است. هدف از این مطالعه بررسی عملکرد و اجزای عملکرد سویا، نسبت برابری زمین و شاخص رقابتی در کشت مخلوط تأخیری با گندم بود.
 
مواد و روش‌ها: آزمایش به‌صورت فاکتوریل در طرح قالب بلوک‌های کامل تصادفی با سه تکرار در شهرستان بیله­سوار مغان در دو سال زراعی 1400-1399 و 1400-1401 اجرا شد. تیمارهای مورد آزمایش شامل تاریخ‌های کاشت سویا (شامل 15 اردیبهشت و 10 خرداد ماه) به‌عنوان فاکتور اصلی و ارقام سویا (شامل ژنوتیپ‌های‌ زودرس (Williams)، متوسط‌رس (L17) و دیررس (DPX)) و تراکم کاشت سویا در بین گندم (15 و 25 بوته در مترمربع) به‌عنوان فاکتورهای فرعی بودند.
 
یافته‌ها: نتایج نشان داد که بیش‌ترین تعداد دانه در نیام، وزن هزار دانه و وزن تک بوته در سال 1400-1399 در تراکم  15 بوته در مترمربع مشاهده شد. بیش‌ترین عملکرد سویا نیز در تاریخ کاشت تاخیری10 خرداد با تراکم  25 بوته در مترمربع با میانگین 50/932 کیلوگرم در هکتار به‌دست آمد. براساس نتایج، بیش‌ترین شاخص برداشت (28/34 درصد) و عملکرد بیولوژیکی (3220 کیلوگرم در هکتار) در تاریخ کاشت 15 اردیبهشت با 25 بوته در مترمربع به‌ترتیب در ارقام متوسط‌رس (L17) و زودرس (ویلیامز) مشاهده شد. همچنین، بیش‌ترین نسبت برابری زمین در سال اول و دوم زراعی در تاریخ کاشت 15 اردیبهشت با 25 بوته در مترمربع به‌ترتیب در ارقام دیررس (DPX) (204/1) و زودرس (ویلیامز) (100/1) به‌دست آمد. بیش‌ترین شاخص بهره‌وری (5/10920) سال اول زراعی در تاریخ کاشت تاخیری 10 خرداد با تراکم 15 بوته در مترمربع در رقم متوسط‌رس (L17) بود. شاخص رقابت و مجموع ارزش نسبی سال اول زراعی در تاریخ کاشت 15 اردیبهشت با تراکم 15 بوته در مترمربع به‌ترتیب در ارقام متوسط‌رس (L17) (401/0) و دیررس (DPX) (972/0) از بیش‌ترین مقدار برخوردار بود و بیش‌ترین شاخص غالبیت (331/0 و 478/0) نیز در هر دو سال زراعی با تاریخ کشت 10 خرداد با تراکم 15 بوته در مترمربع در رقم متوسط‌رس (L17) به‌دست آمد.
 
نتیجه‌گیری: نتایج تحقیق حاضر نشان داد که رقم دیررس DPX)) بیش‌ترین عملکرد (716 کیلوگرم درهکتار) را در کشت مخلوط تأخیری نسبت به ارقام دیگر داشت و استفاده از کشت مخلوط تأخیری راه‌کار مناسبی برای استفاده بهتر از منابع محیطی و افزایش عملکرد در مقایسه با کشت خالص است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating soybean yield and yield components, land equality ratio and competitive index in delayed intercropping with wheat

نویسندگان [English]

  • Alireza Samandar 1
  • morteza barmaki 2
  • adel dabbagh 3
  • raouf seyed sharifi, 4
1 Agrotechnology (Crop Ecology), Dept. of Production Engineering and Plant Genetics, Faculty of Agricultural Sciences and Technology, University of Mohaghegh Ardabili, Ardabil, Iran.
2 Professor, Department of Agronomy and Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran
3 Professor of Plant Ecophysiology Department, Field of Crop Ecology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
4 Department of Agronomy and plant breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili
چکیده [English]

Background & Objectives: Due to the increase in world population and the need for food using traditional agricultural methods does not meet the needs of society. Relay intercropping is one of the ways to achieve sustainability in agriculture. However, studying its economic and competitive indicators is critical to optimizing production. Therefore, the aim of this study was Investigation of soybean yield and yield components, land equivalence ratio and competitive index in relay intercropping with wheat.
 
Materials and Methods: The experiment was conducted as a factorial design within a completely randomized block design with three replications in the Bile-Savar Moghan County, during the 2019-2020 and 2021-2022 in two agricultural years. The treatments included soybean planting dates (including May 15 and June 10) as the main factor and soybean cultivars (early-ripening (Williams), medium-ripening (L17) and late-ripening (DPX) genotypes) and soybean planting density among wheat (15 and 25 plants per square meter)) as the sub-factor.
 
Results: The results showed that the highest number of seeds per pod, thousand-seed weight, and single plant weight were observed in 2019-2020 year at a density of 15 plants per square meter. The highest soybean yield was also obtained on the delayed planting date of June 10 with a density of 25 plants per square meter with an average of 932.50 kg per hectare. Based on the results, the highest harvest index (34.28%) and biological yield (3220 kg per hectare) were observed on the planting date of May 15 with 25 plants per square meter in the medium-ripening (L17) and early-ripening (Williams) cultivars, respectively. Also, the highest land equivalence ratio in the first and second agricultural years was obtained on the planting date of May 15 with 25 plants per square meter in the late-ripening (DPX) (1.204) and early-ripening (Williams) (1.100) cultivars, respectively. The highest productivity index (10920.5) of the first agricultural year was obtained in the delayed planting date of June 10 with a density of 15 plants per square meter in the medium-ripening variety (L17). The competition index and the total relative value of the first agricultural year were obtained in the planting date of May 15 with a density of 15 plants per square meter in the medium-ripening (L17) (0.401) and late-ripening (DPX) (0.972) varieties, respectively, and the highest dominance index (0.331 and 0.478) was obtained in both agricultural years with a planting date of June 10 with a density of 15 plants per square meter in the medium-ripening (L17) variety.
 
Conclusions: The results of the present study showed that the late-ripening (DPX) had the highest yield (716 kg/ha) in relay intercropping compared to other cultivars, and the use of relay intercropping results in better utilization of environmental resources and increased crop production compared to monoculture of the same species.
 

کلیدواژه‌ها [English]

  • Biological Yield
  • Dominance Index
  • Productivity Index
  • Relative Value
  • Thousand-Grain Weight
Abbasi R and Namdari M. 2023. Effect of soybean and sesame intercropping on grain yield and yield components under the low-nitrogen condition. Iranian Journal of Field Crop Science, 54(1): 1-10. https://doi.org/10.22059/IJFCS.2021.324886.654833
Agegnehu G, Ghizaw A and Sinebo W. 2006. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. European Journal of Agronomy, 25: 202–207. https://doi.org/10.1016/j.eja.2006.05.002
Ahmad M, Waraich EA and Tanveer A. 2021. Foliar applied thiourea improved physiological traits and yield of Camelina and Canola under normal and heat stress conditions. Journal of Soil Science and Plant Nutrition, 21: 1666- 1678. https://doi.org/10.1007/s42729-021-00470-8
Ahmadi K, Daneshban SA and Seyadat J. 2012. Evaluation of Reaction Soybean Cultivars to Differences of Planting Dates in North of Khouzestan Conditions. Plant Productions, 35(1): 23-41.
Alazmani1 A, Naeemi M, Faraji A, Rahemi Karizki A and Ahangar L. 2023. Effect of Temperature Limits and Crop Density on Quality Characteristics of Oils and Fatty Acids in Regression Relationship with Soybean Yield. Journal of Crop Ecophysiology, 17(1):51-66. https://doi.org/10.30495/JCEP.2023.1928321.1796
Angelini LG, Abou Chehade L, Foschi L and Tavarini S. 2020. Performance and potentiality of Camelina (Camelina sativa L. Crantz) genotypes in response to sowing date under mediterranean environment. Agronomy, 10(12): 1929-1937. https://doi.org/10.3390/agronomy10121929
Aznar-Sánchez JA, Velasco-Muñoz JF, García-Arca D and López-Felices B. 2020. Identification of opportunities for applying the circular economy to intensive agriculture in Almería (SouthEast Spain). Agricultural Journal, 10(10): 1499. https://doi.org/10.3390/agronomy10101499
Bachhao KS, Kolekar PT, Nawale SS and Kadlag AD. 2018. Response of different wheat varieties to different sowing dates. Journal of Pharmacology and Phytochemistry, 7(1): 2178-2180. https://doi.org/10.3923/ja.2003.190.194
Blanco–Canqui H and Lal R. 2009. Crop residue removal impacts on soil productivity and environmental quality. Critical Reviews in Plant Sciences, 28: 139–163. https://doi.org/ DOI:10.1080/07352680902776507
Bourke PM, Evers JB, Bijma P, Van Apeldoorn DF, Smulders MJM, Kuyper TW, Mommer L and Bonnema G. 2021. Breeding beyond monoculture: Putting the “intercrop” into crops. Frontiers in Plant Science, 12: 2602. https://doi.org/10.3389/fpls.2021.734167
Cuartero J, Pascual JA, Vivo JM, Özbolat O, Sánchez-Navarro V, Egea-Cortines M, Zornoza R, Mena MM, Garcia E and Ros M. 2022. A first-year melon/cowpea intercropping system improves soil nutrients and changes the soil microbial community. Agriculture, Ecosystems and Environment, 328: 107856. https://doi.org/10.1016/j.agee.2022.107856
Debbarma A and Debbarma A. 2018. Perspectives on Rubber Monoculture in Tripura, North-East India. International Journal of Ecology and Environmental Sciences, 44(1): 27-31.
Dehghanian H, Morteza Barmaki M, Dabbagh Mohammadi Nassab A and Seifdavati J. 2020. Forage Yield and Relay Intercropping Advantage of Grass pea (Lathyrus sativus L.) and Annual Cereals at Different Cropping Patterns.  Journal of Agricultural Science and Sustainable Production, 30(1): 41-56. https://doi.org/20.1001.1.24764310.1399.30.1.3.4
Dhima KV, Lithourgidis AS, Vasilakoglou IB and Dordas CA. 2007. Competitionindices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 100: 249–256. https://doi.org/10.1016/j.fcr.2006.07.008
Erfani R, Sattari M, Mohaddesi A, Tavasoli F, Rahim Sourorsh H, Saeedi M, Mohammad Yousefi M, Fathi N, Abadian H and Abbasian A. 2020. Determination of the proper transplanting datebased on GDD and the best plant density in promising line of rice926 (Tisa). Applied Agricultural Research, 33(1): 125-137. https://doi.org/10.22092/aj.2020.126741.1413
Feng LY, Raza MA, Shi J, Ansar M, Titriku JK, Meraj TA, Shah GA, Ahmed Z, Saleem A and Liu W. 2020. Delayed maize leaf senescence increases the land equivalent ratio of maize soybean relay intercropping system. European Journal of Agronomy, 118: 126092. https://doi.org/10.1016/j.eja.2020.126092
Frahmand Rad N, Moosavi SG and Saberi MH. 2019. Effect of planting date and plant density on morphological traits, yield and yield components of Cannabis sativa L. Applied Research in Field Crops, 32(1): 28-52. https://doi.org/10.22092/aj.2019.115031.1180
Gholinejad E, Aeenehband A, Hasanzade Ghorttappe A, Barnoosi I and Rezaei H. 2009. Evaluation of effective drought stress on yield, yield components and harvest index of sunflower hybrid iroflor at different levels of nitrogen and plant population in Urmieh climate conditions. Journal of Plant Production, 16(3): 1-27. https://doi.org/20.1001.1.23222050.1388.16.3.1.0
Hamzei J and Zarei M. 2024. Evaluation of Growth Indices, Yield Performance and Advantages in Intercropping of wheat, Soybean and Corn. Journal of Agricultural Science and Sustainable Production, 34(3):1-18. https://doi.org/10.22034/saps.2023.54328.2953
Haugaardnielsen H, Ambus P and Jensen ES. 2001. Inter-specific competition, N-use and interference with weed in pea – barley intercropping. Field Crops Research, 70: 101-109. https://doi.org/10.1016/S0378-4290(01)00126-5
Hosseinzadeh M, Hoseini SMB and Alizadeh H. 2021. Study of sesame (Sesamum indicum L.) and cowpea (Vigna unguiculata L.) intercropping under weed control and non-control conditions. Iranian Journal of Field Crop Science, 52(3): 147-162. https://doi.org/10.22059/IJFCS.2020.294043.654669
Hu F, Feng F, Zhao C, Chai Q, Yu A, Yin W and Gan Y. 2017. Integration of wheat-maize intercropping with conservation practices reduces CO2 emissions and enhances water use in dry areas. Soil and Tillage Research, 169: 44–53. https://doi.org/10.1016/j.still.2017.01.005
Kalantari Khandani, S, Koocheki A and Nassiri Mahallati M. 2018. Effects of maize-soybean cultivars as replacement series in intercropping on yield and land equivalent ratio. Applied Research in Field Crops, 31(2): 21-45. https://doi.org/10.22092/AJ.2018.121536.1286
Lithourgidis AS, Vlachostergios DN, Dordas CA and Damalas CA. 2011. Dry matter yield, nitrogen content competition in pea-cereal intercropping systems. European Journal of Agronomy, 34(4): 287-294. https://doi.org/10.1016/j.eja.2011.02.007
Liu CLC, Kuchma O and Krutovsky KV. 2018. Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Global Ecology and Conservation, 15: e00419. https://doi.org/10.1016/j.gecco.2018.e00419
Lollato RP, Ruiz Diaz DA, DeWolf E, Knapp M, Peterson DE and Allan KF. 2019. Agronomic practices for reducing wheat yield gaps: a quantitative appraisal progressive producers. Crop Science. 59(1): 333-350. https://doi.org/10.2135/cropsci2018.04.0249
Majidian P, Ghorbani HR and Farajpour M. 2024. Achieving agricultural sustainability through soybean production in Iran: Potential and challenges. Heliyon, 10(4): e26389. https://doi.org/10.1016/j.heliyon.2024.e26389
Mandić V, Đorđević S, Đorđević N, Bijelić Z, Krnjaja V, Petričević M and Brankov M. 2020. Genotype and sowing time effects on soybean yield and quality. Agriculture, 10(11): 502-511. https://doi.org/10.3390/agriculture10110502
Mansouri Daneshvar MR, Ebrahimi M and Nejadsoleymani H. 2019. An overview of climate change in Iran: facts and statistics. Environmental Systems Research, 8:1-10. https://doi.org/10.1186/s40068-019-0135-3
Mazaheri D. .1998 Mixed Cropping. Publication of Tehran University. (In Persian with English Abstract).
Mohavieh Asadi N, Bijanzadeh E and Behpoori A. 2018. Evaluation of Seed Yield and Competitive Indices in Relay Intercropping of Barley (Hordeum vulgare L.) with Chickpea (Cicer arietinum L.) under Late Season Low Water Stress. Agroecology, 11(3): 1169-1182. https://doi.org/10.22067/JAG.V11I3.79532
Mondani F and Jalilian, A. 2019. Evaluation of the Interaction between Sowing Date and Cultivar on Different Traits of Chickpea (Cicer arietinum L.) in Kermanshah Climate Conditions. Plant production technology, 19: 51-37. https://doi.org/10.22084/PPT.2018.9470.1533
Monti M, Pellicanò A, Santonoceto C, Preiti G and Pristeri A. 2016. Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment. Field Crops Research, 196: 379-388. https://doi.org/10.1016/j.fcr.2016.07.017
Nehbandani A, Soltani A and Darvishirad P. 2015. Effect of terminal drought stress on water use, growth and yield of chickpea (Cicer arietinum L). Journal of Plant Ecophysiology, 7: 17-27. https://doi.org/20.1001.1.20085958.1394.7.23.5.1
Noormohammadi Q, Siadat S and Kashani A. 2014. Agriculture. Publication of Shahid Chamran University of Ahvaz. (In Persian with English Abstract).
Rabiee M and Jilani M. 2014. Effect of the planting date, row spacing and seed rate on grain yield and protein yield of faba bean (Vicia faba L.) in Rasht. Iranian Journal of Pulses Research, 5(1): 9-22. https://doi.org/10.22067/IJPR.V1393I1.46052
Rassam GA and Soltani A. 2014. A simple model to simulate growth and yield of soybean. Journal of Plant Production Research, 21(2): 87-105. https://doi.org/20.1001.1.23222050.1393.21.2.5.7
Rezaeichianeh E, Dabbagh Mohammadi Nassab A, Shakiba MR, Ghassemi-Golezani K and Aharizad S. 2011. Intercropping of maize (Zea mays L.) and faba bean (Vicia faba L.) at different plant population densities. African Journal of Agricultural Research, 7: 1786-1793.
Rezaei-chiyaneh E, Khorramdel S and Garachali P. 2015. Evaluation of relay intercropping of sunflower and faba bean on their yield and land use efficiency. Journal of Crops Improvement, 17(1): 183-196. https://doi.org/10.22059/jci.2015.54797
Salari M and Bahrani A. 2022. Study the effect of different sowing dates on qualitative and quantitative traits of soybean in Khuzestan region. Bi-Quarterly Journal of Plant Production science, 12(2): 179-189. https://doi.org/10.2. /JPPS.2023.703388
Satari Yuzbashkandi S and Khalilian S. 2020. On projecting climate change impacts on soybean yield in Iran: an Econometric approach. Environmental Processes, 7: 73-87. https://doi.org/10.1007/s40710-019-00400-y
Semnaninejad H, Nourmohammadi G, Rameeh V and CheratiAraei A.  2024. Effect of sowing date and planting density on yield, yield components and protein percentage of spring wheat cultivars in Neka region. Crop physiology journal, 16(61):65 -84. URL: http://cpj.ahvaz.iau.ir/article-1-1504-fa.html
Shirani rad AH and Safavi Fard N. 2024. Study on the Effects of Planting Date and Density and Humic Acid on Quantitative and Qualitative Traits of Camelina Oil-seed Plant. Journal of Crop Production and Processing, 14(1):1-16. URL: http://jcpp.iut.ac.ir/article-1-3174-fa.html
Soleymani F and Naseri R. 2020. Responses of seed yield and morphophysiological traits of mungbean (Vigna radiate L.) cv. Gohar to GDD and plant density in Ilam region. Journal of Crop Ecophysiology, 14(3): 433-446. 10.30495/JCEP.2020.679071
Vaghar MS, NoorMohammadi GH and Shams K. 2009. Effect of Sowing Time on Yield and Yield Components of Dryfarming Chickpea (Cicer arientinum L.) in Kermanshah Region. Agronomy and plant breeding, 5: 1-18.
Wahla IH, Ahmad R, Ehsanullah A and Jabbar A. 2009. Competitive functions of components crop in some barley based intercropping systems. International Journal of Agriculture and Biology, 11(1): 69–72.
Willey RW and Rao MR. 1980. A Competitive Ratio for Quantifying Competition between Intercrops. Experimental Agriculture, 16: 117-125. http://dx.doi.org/10.1017/S0014479700010802
Yang F, Huang S, Gao R, Liu W, Yong T, Wang X, Wu X and Yang W. 2014. Growth of soybean seedling in relay strip intercropping systems in relation to light quantity and red: Far- red ratio. Field Crops Research, 155: 245-253. https://doi.org/10.1016/j.fcr.2013.08.011
Yu Y, Stomph TJ, Makowski D and van der Werf W. 2015. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: a metaanalysis. Field Crops Research. 184: 133–144. https://doi.org/10.1016/j.fcr.2015.09.010