تعیین الگوی بهینه بهره‌برداری از محصولات زراعی در منطقه گهرباران ساری (مقایسه برنامه‌ریزی ریاضی غیرخطی معمولی و الگوریتم ژنتیک)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 رشته اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 دانشکده اقتصاد، دانشگاه علامه طباطبائی، تهران، ایران

چکیده

        در جهان امروز، یکی از مشکلات اساسی بشر تامین نیازهای غذایی با توجه به محدودیت نهاده­ها است. بر همین اساس بهینه‌سازی الگوی کشت محصولات زراعی، یک راهکار مناسب جهت توسعه بخش کشاورزی و تأمین غذای بشر است. در این راستا در مطالعه حاضر، الگوی کشت بهینه در منطقه گهرباران شهرستان ساری با استفاده از مدل برنامه‌ریزی غیرخطی معمولی و الگوریتم ژنتیک تعیین و با یکدیگر مقایسه شد. داده‌های مطالعه حاضر از طریق تکمیل پرسشنامه و مصاحبه حضوری با 250 کشاورز منطقه گهرباران در سال زراعی 1394-1393 جمع‌آوری شده است. نتایج حاصل از این مطالعه نشان داد که الگوی کشت بهینه بدست آمده از مدل الگوریتم ژنتیک غیرخطی به علت تنوع بیشتر، افزایش سودآوری به میزان 2 درصد و کاهش ریسک به میزان 22 درصد، نسبت به مدل برنامه‌ریزی غیرخطی معمولی برتری دارد. با توجه به اینکه استفاده از الگوی کشت پیشنهادی الگوریتم ژنتیک موجب افزایش بازده برنامه‌ای بهره‌برداران نسبت به الگوی برنامه‌ریزی غیرخطی معمولی می‌شود، لذا تشویق و حمایت دولت از کشاورزان در زمینه به‌کارگیری نتایج چنین الگوهایی الزامی است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Determining of Optimal Cropping Pattern in Sari Goharbaran (Comparing the Ordinary Non-Linear Mathematical Programming and Genetic Algorithm)

نویسندگان [English]

  • Khadijah Abdi Rokni 1
  • Seyed Ali Hosseini-Yekani 1
  • Samaneh Abedi 2
  • Fatemeh Kashiri Kolaei 1
چکیده [English]

In today's world, one of the basic human problems is securance of food need due to inputs limitation. Accordingly, cropping pattern optimization is a suitable strategy for agricultural development and human food securement. In this study, optimal cropping pattern has been determined and compared by using of ordinary non-linear programming and genetic algorithm in Goharbaran region of Sari County. Required data for this study has been collected with interview of 250 farmers during the 2014-2015 crop year. The results of this study showed that the optimal cropping pattern of non-linear genetic algorithm is superior compared to ordinary non-linear programming model because of more variety and increasing profit by 2 percent and reducing risk by about 22 percent. Since the proposed cropping pattern of genetic algorithm causes to increase farmers' gross margin compared to the ordinary nonlinear programming, so the government should encourage and support farmers on the application of the results of such models.
 

کلیدواژه‌ها [English]

  • Cropping Pattern
  • genetic algorithm
  • Goharbaran of Sari
  • Non-Linear Programming
  • Risk
Agh M, Joolaie R, Keramatzadeh A and Shirani F. 2015. Determination of cropping pattern with emphasis on reduction in chemical fertilizers and water consumption policies in Mazandaran province: case study of Behshahr. Journal of Soil Management and Sustainable Production, 5(3): 247-259. (In Persian).
Amantaray S, Rath A, Sahu A and Swain P. 2017. Derivation of Optimal Cropping Pattern in Sambalpur Distributary using Genetic Algorithm. International Journal of Soft Computing and Artificial Intelligence.5 (1): 1- 6.
Baghrian A, Saleh A and Peykani Gh. 2007. Optimization of cropping pattern in Kazeroon region using linear programming method. Sixth Biennial Conference of Iranian Agricultural Economics Association, Mashhad. 8 and 9 November. (In Persian).
Barzegari M and Ghazal soflo A. 2015. Optimization of Urban Water Distribution Network Using Genetic Algorithm (Case Study: Salami City). National Conference on Civil Engineering and Needs Research.1-11. (In Persian).
Dutta, S, Sahoo, B, Mishra, R and Acharya S. 2016. Fuzzy Stochastic Genetic Algorithm forObtaining Optimum Crops Pattern and Water Balance in a Farm, Water Resource Management, 30:4097–4123.
Faghihi N, Babazadeh H, Sedghi H and Pazira P. 2015. Optimization of Irrigation Planning and cropping pattern under Deficit Irrigation Condition Using Genetic Algorithm. Indian Journal of Fundamental and Applied Life Sciences, ISSN: 2231– 6345.
Godarzi AA, 2009. Optimization of water absorption cycle and solar bromide lithium using genetic algorithm. Thesis of Sharif University. (In Persian).
Gopi Annepu.  2011. Land Allocation Strategies through Genetic Algorithm Approach–A Case Study. Global journal of research in engineering. Global Journal of Research in Engineering, 11 (4): 6-14.
Hosseini Z, Esmaili M and Reza Gh. 2013. Multi-objective optimization model for integrated inventory and pricing decisions in terms of probabilistic (exponential and uniform) procurement times using genetic algorithm. The Journal of Operations Research in its Applications, 11(1): 31-46. (In Persian).
Kiafar H and Sadradini A.A. 2011. Optimal water allocation for Sufi-Chay Irrigation and Drainage network in East Azarbaijan province of Iran using genetic algorithm, Fourth Conference on Water Resources Management, 5: 52-61.
Kumar D, Raju S and Ashok B. 2006. Optimal reservoir operation for irrigation of multiple crops using genetic algorithms, Journal of Irrigation and Drainage Engineering. ASCE, 132(2):123-129.
Raju K and Kumar D. 2004. Irrigation planing using genetic algorithms. Water Resource Management, 18(2): 163-176.
Rastegari F, azizzade F, mohtashmi T and salari A. 2009. Economic Optimization Schedule Irrigation of Some Cultivated Plants in Zavv Plain of the Province Khorasan Razavi. Journal of Water Research in Agriculture. 31(2).277- 286. (In Persian).
Rezaee Z, Dourandish A and Nobahar A. 2009. Determination of Cultivation pattern Under Three strategies of economic, social, environmental with application of genetic algorithms: (Case Study of Mashhad). Biennial Conference of Agricultural Economics, 1607- 1615. (In Persian).
Torabi M, 1998. Genetic Algorithm and New Horizons in Decoding. Proceedings of Intelligent Systems. Sharif University of Technology. Tehran. (In Persian).
Zahedi keyvan M, 2007. Determination of optimal cropping pattern in a field, Random mathematical programming approach. Thesis Master of Science (Economics), Faculty of Economics and Management, Isfahan University. (In Persian).