شبیه‌سازی اثر دور آبیاری و میزان کود بور بر عملکرد ریشه چغندرقند (Beta vulgaris L.) با استفاده از مدل AquaCrop در دشت قزوین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 بخش آبیاری و فیزیک خاک، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی،کرج، ایران

چکیده

چکیده
اهداف: کم‌آبی و عدم تغذیه کافی به عنوان عوامل اساسی در کاهش عملکرد ریشه چغندرقند در کشور ایران شناخته شده‌اند. با توجه به اینکه آبیاری و کود بور در زراعت چغندرقند اهمیت دارند؛ هدف از پژوهش حاضر شبیه‌سازی اثر این دو فاکتور بر عملکرد ریشه چغندرقند با استفاده از مدل AquaCrop بود.
 
مواد و روش‌ها: تیمارهای مورد استفاده در این تحقیق شامل مدیریت آبیاری در چهار دور (I1:6، I2: 9،I3: 12 و I4: 15 روز) و سطوح کود بور در سه سطح  F0: 21، F1: 30 و F2: 39 کیلوگرم در هکتار؛ به ترتیب نشان دهنده سطوح کم، متوسط ومناسب بود.
 
یافته‌ها: بیشترین و کمترین اختلاف بین مقادیر شبیه‌سازی شده و مشاهداتی عملکرد ریشه به ترتیب در تیمارهای F2I2 (33/4 تن در هکتار) و F0I4 (37/0 تن در هکتار) به دست آمد. متوسط اختلاف بین مقادیر مشاهداتی و شبیه‌سازی شده عملکرد ریشه چغندرقند برابر با 77/1 تن بر هکتار بود. نتایج آماره‌های NRMSE (04/0) و RMSE (24/2) نشان داد که این مدل از دقت قابل قبولی در تعیین عملکرد ریشه چغندرقند برخوردار بود. با این وجود براساس آماره MBE (07/1) این مدل دچار خطای بیش برآوردی شد. آماره‌های d و EF نیز برابر با 99/0 به دست آمدند که حاکی از کارایی بالای این مدل بود. مقادیر آماره‌های RMSE و NRMSE برای کارایی مصرف آب به ترتیب برابر با 29/0 کیلوگرم بر متر مکعب و 04/0 تعیین شد. آماره MBE نیز برابر با 17/0 کیلوگرم بر مترمکعب برای کارایی مصرف آب به دست آمد.
 
نتیجه‌گیری: با توجه به اهمیت پیش‌بینی اثر عوامل حاکم بر عملکرد چغندرقند در تولید پایدار، استفاده از این مدل برای شبیه‌سازی چغندرقند پیشنهاد می‌شود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Irrigation Period and Boron Fertilizer on Sugar Beet Yield (Beta vulgaris L.) using AquaCrop in Qazvin Plain

نویسندگان [English]

  • Hassan Sayyahi 1
  • Aslan Egdernezhad 1
  • Niaz Ali Ebrahimipak 2
چکیده [English]

Abstract                        
Background and Objective: Water and fertility stress are the most important factors for reducing sugar beet yield in Iran. Since irrigation and boron fertilizer have significant effects on sugar beet yield, simulating those factors on sugar beet yield were done using AquaCrop model.
 
Materials & Methods: Treatments were consisted of irrigation management in four periods (I1: 6, I2: 9, I3: 12, and I4: 15 day) and boron fertilizer amount in three levels (F0: 21 kg.ha-1, F1: 30 kg.ha-1 and F2: 39 kg.ha-1; as low, medium and appropriate, respectively).
 
Results: Maximum and minimum difference between simulation and observation values for yield were shown in F2I2 (4.33 t.ha-1) and F0I4 (0.37 t.ha-1), respectively. Average difference between simulation and observation value for yield was 1.77 t.ha-1. NRMSE (0.04) and RMSE (2.24) values showed that AquaCrop had good accuracy for simulating yield, however, MBE (1.07) result revealed the model had over estimate error. Criteria results for d and EF showed AquaCrop had good efficiency. RMSE and NRMSE values for water use efficiency were 0.29 kg.m-3 and 0.07, respectively. MBE value for mentioned parameter was 0.17 kg.m-3.
 
Conclusion: Regarding the importance of the effect of main factors on sugar beet yield in sustainable production, it is recommended to use AquaCrop for simulating Sugar beet Yield.
 

کلیدواژه‌ها [English]

  • Boron Fertilizer
  • Crop Simulation
  • Sugar Beet
  • Water Use Efficiency
  • Yield
Akumaga U, Tarhule A and Yusuf A.A. 2017. Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agricultural and Forest Meteorology, 232: 225–234.
Alishiri R, Paknejad F and Aghayari F 2014. Simulation of sugar beet growth under different water regimes and nitrogen levels by AquaCrop. Bioscience, 4(4): 1-9.
Andarziana B, Bannayanb M, Stedutoc P, Mazraeha H, Barati M. E, Barati M A and Rahnama A. 2011. Validation, and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 100:1-8.
Blum F A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112: 119-123.
Boogaard H. L, Van Diepen C. A, Rotter R. P, Cabrera  J M C A and Van Laar H H. 1998. WOFOST 7.1; user's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5 (No. 52). SC-DLO.
Ebrahimipak NA, and Mostashari M. 2012. Evaluation of irrigation water management and boron fertilizer to increase water use efficiency of sugar beet. Water and Irrigation Management, 2(2):53-67.
Ebrahimipak NA, and Tafteh  A. 2017. Determination of yield-water use function for sugar beet in Qazvin. Journal of Sugarbeet, 33(1): 47-63.
Ebrahimipak NA, Pazera E, Kaveh F, Abedi MJ, and Farshi AA. 2006. The effect of deficit irrigation in different growth stages on quantity and quality on yield sugar beet and water use efficiency. Pajouhesh and Sazandegi, 78: 63-73. (In Persian).
Farahani H. J, Izzi G, Steduto P and Oweis T Y. 2009. Parameterization and evaluation of AquaCrop for full and deficit irrigated cotton. Agronomy, 101: 469-476.
Farre F, and Faci JM. 2009. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agricultural Water Management, 96: 384-394.
Garcia-Vila M, Fereres E, Mateos L, Orgaz F and Steduto P. 2009. Deficit irrigation optimization of cotton with AquaCrop. Agronomy, 101: 477-487.
Geerts S, Raes D, Garcia M, Miranda R and Cusicanqui J A. 2009. Simulating yield response to water of quinoa (Chenopodium quinoaWilld.) with FAO-AquaCrop. Agronomy, 101: 499-508.
Geerts S, and Raes D. 2009. Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management. 96: 1275-1284.
Gerik T J, Rosenthal W D and Duncan R R. 1988. Simulating grain yield and plant development of ratoon grain sorghum over diverse environments. Field Crop Research, 19(1): 63–74.
Heng LK, Hsiao TC, Evett S, Howell T and Steduto P. 2009. Validating the FAO AquaCrop model for Irrigated and Water Deficient field maize. Agronomy, 101(3): 488-498.
HsiaoTC, Heng LK, Steduto P, Raes D and Fereres E. 2009. AquaCrop-Model parameterization and testing for maize. Agronomy, 101: 448-459.
Katerji N, Campi P and Mastrorilli M. 2013. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management, 130: 14-26.
Kunz R, Schulze R, Mabhaudhi T and Mokonoto O. 2014. Modeling the potential impacts of climate change on yield and water use of sugarcane and sugar beet: preliminary results based on the AquaCrop model. South African Sugar Association, 87: 285-289.
Malik A, Shakir A. S, Ajmal M, Jamal Khan M and Ali Kan T. 2017. Canopy cover, biomass and root yield under different irrigation and field management practices in semi-arid regions of Pakistan. Water Resources Management, 31: 4275-4292.
Mousavi S N. 2008. Factors effective on sugar beet supply in Fars province. Journal of Sugar Beet, 24(1): 107-119. (In Persian).
Raes D, Steduto P, Hsiao T C and Freres E. 2012. Reference manual AquaCrop, FAO, land and water division, Rome Italy.
Ranjbar A. 2014. Simulating    water, nitrogen and yield for determining nitrogen uptake index during corn growth. Ph.D. Thesis. Tehran. (In Persian).
Stricevic R, Cosic M, Djurovic N, Pejic B and Maksimovic L. 2011 Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agricultural Water Management, 98: 1615-1621.
Todorovic M,  Albrizio R, Zivotic L, Abisaab M and Stwckle C. 2009. Assessment of AquaCrop, CropSyst and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy, 101: 509-521.
Van Dam JC, Huygen J, Wesseling JG, Feddes RA, Kabat P, Van Walsum PEV, Groenendijk P and Van Diepen CA. 1997 Theory of SWAP Version 2.0, Report #71. Department Water Resources. Wageningen Agricultural University. 167 pp.
Van Gaelen H, Tsegay A, Delbecque N, Shrestha N, Garcia M, Fajardo H, Miranda R, Vanuytrecht E, Abrha B, Diels J and Raes D. 2014. Asemi-quantitative approach for modelling crop response to soil fertility: evaluation of the Aqua crop procedure. Journal of Agricultural Science, 1–16.
Ziaii Gh, Babazadeh H, Abbasi F and Kaveh F. 2015. Evaluation of the AquaCrop and CERES-Maize Models in Assessment of Soil Water Balance and Maize Yield. Iranian Journal of Soil and Water Research, 45(4): 435-445. (In Persian).