بررسی نقاط کلیدی حساس به شوری در گندم با استفاده از فلوئورسانس سریع کلروفیل a، مکانیسم‌های دفاعی و شاخص‌ پایداری غشا

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده کشاورزی دانشگاه مراغه

چکیده

با توجه به اهمیت گندم در تغذیه جامعه بشری و پراکنش وسیع شوری در اراضی کشاورزی، رقم کرج 3 گندم نان با هدف بررسی برخی نقاط ضعف و قوت آن در پاسخ به شوری انتخاب و به روش هوا کشت پرورش یافت. پس از رسیدن گیاهچه‌ها به مرحله 4 تا 5 برگی، گیاهچه­ها به مدت 10 روز در تنش شوری 200 میلی مولار قرار گرفتند. بعد از سپری شدن زمان مذکور میزان فلوئورسانس سریع کلروفیلa، فعالیت آنزیم‌های درگیر در مکانیسم‌های دفاعی گیاه، شاخص‌های مرتبط با تنش اکسیداتیو و شاخص پایداری غشا اندازه‌گیری شد. نتایج حاصل نشان داد که فعالیت آنزیم‌ سوپر اکسید دیسموتاز کل و آیزوزیم‌های آن در شرایط تنش شوری تغییر معنی‌داری نداشتند. بعلاوه فعالیت آنزیم‌های کاتالاز، گایاکول پراکسیداز و آسکوربات پراکسیداز در شرایط تنش شوری افزایش داشت. با وجود افزایش معنی‌دار آنزیم‌های جمع‌آوری کننده پراکسید هیدروژن، این متابولیت سمی در سلول‌های برگ در اثر شوری تجمع یافت. همچنین در اثر شوری میزان پراکسیداسیون لیپیدی و شاخص پایداری غشا بطور معنی‌داری تغییر نمود. بررسی میزان سدیم و پتاسیم در رقم کرج3 نشان داد که علی رغم افزایش معنی‌دار سدیم و کاهش قابل ملاحظه پتاسیم، نسبت پتاسیم به سدیم در شرایط شوری نیز بیشتر از یک بود. بررسی شاخص‌های مرتبط با فلوئورسانس سریع کلروفیل a نیز نشان داد که تنها پارامتر Fv/Fm در اثر شوری کاهش یافته‌است. لذا نتایج حاصل حاکی از آنست که گزینش ارقام متحمل به شوری تنها با استفاده از شاخص Fv/Fm  چندان معتبر نبوده و بهتر است همزمان از شاخص‌های دیگر بویژه شاخص عملکرد استفاده گردد. همچنین فتوسیستم II در رقم کرج3 حساس به شوری نیست. احتمال می‌رود که علت تجمع پراکسید هیدروژن و وقوع تنش اکسیداتیو، علی‌رغم افزایش فعالیت آنزیم‌های جمع‌آوری کننده آن ناشی از عدم افزایش فعالیت سوپراکسید دیسموتاز و آیزوزیم‌های آن باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of Key Points of Salt Response Using Rapid Chlorophyll a Fluorescence, Defense Mechanisms and Membrane Stability Index in Wheat

نویسندگان [English]

  • E Esfandiari
  • W Enayati
چکیده [English]

In attention to wheat importance in people nutrition and wide distribution of salt agricultural lands, bread wheat variety of karaj3 were aeroponicaly way grown to investigate weak and power points in response to salinity. After growing the seedlings as 4 -5 leaf stage, they were exposed to salt stress, 200 mM NaCl. Then, rapid chlorophyll a fluorescence, activities of enzymes involving plant defense mechanisms, indices related to oxidative stress and membrane stability index were measured. The obtained results displayed that total superoxide dismutase activity and its isozymes had no significant changes under stress conditions. In addition, activities of catalase, guaiacol peroxidase and ascorbate peroxidase were elevated under stress conditions. Hydrogen peroxide, a toxic metabolite, accumulated in leaf cells affecting by salt, though significant increasing of its scavenger enzymes. Also, significant alterations occurred for lipid peroxidation and membrane stability index by salt. Na and K values in variety of karaj3 showed that K/Na ratio was more than one, however, significant increasing of Na and high decreasing of K were found. Assessing of indices related to rapid chlorophyll a fluorescence revealed that Fv/Fm parameter has been just decreased under salt. Therefore, results showed that selection of salt tolerant varieties just by Fv/Fm index was not enough reliable and it is better to apply simultaneously other indices particularly yield index. Photosystem II was not susceptible to salinity in Karaj3 variety, too. It seems lack of increased activity of superoxide dismutase and its isozymes was the probable factor for accumulation of hydrogen peroxide and oxidative stress initiation, in spite of increased its scavenging enzymes activity.

کلیدواژه‌ها [English]

  • Membrane stability index
  • Plant defense mechanisms
  • Rapid chlorophyll a fluorescence
  • Wheat
  • salinity
اسفندیاری، ع.، س محبوب و ف شکاری. 1387. اثرات مخرب انواع اکسیژن فعال، مکانیسم های محافظتی گیاه و ضرورت توجه به آن. مقالات کلیدی دهمین کنگره زراعت و اصلاح نباتات ایران، کرج. صفحه‌های 22-1.
اسفندیاری، ع.، س محبوب و ف شکاری. 1388. اصول فیزیولوژی گیاهی (جلد اول). انتشارات عمیدی. تبریز
سادات قزاقی، س. 1388. بررسی تنوع تحمل به شوری ارقام گندم با استفاده از مارکرهای مولکولی. پایان نامه کارشناسی ارشد اصلاح نباتات. دانشکده کشاورزی دانشگاه محقق اردبیلی.
Aebi H, 1984. Catalase in vitro. Method of Enzymology 105:121-126.
Ahmed P, Jaleel C, Azooz M and Gowher N, 2009. Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Botany Research International 2: 11-20.
Asada K, 2000. The water-water cycle as alternative photon and electron sinks. Philosophical Transactionsof theRoyal Society 355:1419-1431.
Azizpour K, Shakiba MR, Khosh Kholgh Sima NA, Alyari H, Moghaddam M, Esfandiari E and Pessarakli M, 2010. Physiological response of spring durum wheat genotypes to salinity. Journal of plant nutrition 33: 859-873.
Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254.
Breusegem FV, Vranova E, Dat JF and Inze D, 2001. The role of active oxygen species in plant signal transduction. Plant Science 161:405-414.
Cramer GR, Alberico GJ and Schmidt C, 1994. Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Australian Journal of Plant Physiology 21: 675–692.
Edreva A, 2005. Generation and scavenging of reactive oxygen species in chloroplasts: A submolecular approach. Agriculture, Ecosystems and Environment 106: 119-133.
El-Hendawy SE, Hu Y and Schmidhalter U, 2005. Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Australian Journal of Agricultural Research 56: 123–134.
Esfandiari E, Alavi-Kia SS, Bahmani A and Aazami MA, 2009. The effect of light on ROS-scavenging systems and lipid peroxidation under cold conditions in saffron (Crocus sativus L.). African Journal of Agricultural Research 4: 378-382.
Esfandiari E, Shokrpour M and Alavikia SS, 2010. Effect of Mg deficiency on antioxidant enzymes activities and lipid peroxidation. Journal of Agricultural Science 3: 131-136.
Force L, Critchley C and Rensen J, 2003. New fluorescence parameters for monitoring photosynthesis in plants. Photosynthesis Research 78: 17-33.
Fridovich I, 1989. Superoxide dismutases: An adaptation to a paramagnetic gas. The Journal of Biological Chemistry 264: 7761-7764.
Goncalves J and Santos UM, 2005. Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environment of high irradiance. Brazilian Journal of Plant Physiology 17: 307-313.
Goncalves J, Santos U, Nina A and Chevreuil L, 2007. Energetic flux and performance index in copaiba (Copaifera multijuga Hayna) and mahogany (Swietenia macrophylla King) seedling grown under two irradiance environments. Brazilian Journal of Plant Physiology 19: 171-184.
Hankamer B, Barber J, Boekema E, 1997. Structure and membrane organization of photosystem II from green plants. Annual Review of Plant Physiology and Plant Molecular
Biology 48: 641-672.
Kao WY, Tsai T, Tsai H and Shih CN, 2006. Response of three glycine species to salt stress. Environmental and Experimental Botany 56: 120–125.
Kocheva K, Lambrev P, Georgiev G, Goltsev V and Karabaliev M, 2004. Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 63: 121-124. 
Lazar D and Ilik P, 1997. High temperature induced chlorophyll fluorescence changes in barley leaves: comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve. Plant Science 124: 159-164.
Leidi E and Saiz JF, 1997. Is salinity tolerance related to Na+ accumulation in upland cotton (Gossypium hirsutum L.) seedlings? Plant and Soil 190: 67–75.
Mansour MMF and Stadelmann EJ, 1994. NaCl-induced changes in protoplasmic characteristics of Hordeum vulgare cultivars differing in salt tolerance. Physiolgia Plantarum 91: 389–394.
Mansour MMF and Salama K, 2004. Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany 52: 113–122.
Mansour MMF, Salama K. Ali F and Abou Hadid A, 2005. Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. General and Applied Plant Physiology 31: 29–41.
Martinez CA, Loureiro M, Oliva A and Maestri M, 2001. Differential responses of superoxide dismutase in freezing resistant Solanum tuberosum subjected to oxidative and water stress. Plant Science 160:505-515.
Mishra A, Srivastava A and Strasser R, 2001. Utilization of fast chlorophyll a technique in assessing the salt/ion sensitivity of mung bean and brassica seedlings. Journal of Plant Physiology 158: 1173-1181.
Mittler R, 2002. Oxidative stress, antioxidants and stress tolerance, Trends in Plant Science 7: 405-410.
Munns R and Tester M, 2008. Mechanism of salinity tolerance. The Annual Review of Plant Biology 59: 651-681.
Murillo-Amador B, Jones H, Kaya C, Aguilar R, Garc´ıa-Hern´andez J, Troyo-Di´eguez E, Avila-Serrano N and Rueda-Puente E, 2006. Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environmental and Experimental Botany 58: 188–196.
Neill S, Desikan R and Hancock J, 2002. Hydrogen peroxide signaling. Current Opinion in Plant Biology 5: 388-395.
Ort D, 2001. When there is too much light. Plant Physiology 125: 29-32.
Sairam RK, Rao KV and Srivastava GC, 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163: 1037-1046.
Santos CV, 2004 Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae 103: 93–99.
Sergiev V, Alexieva E and Karanov E, 1997. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus de l¢Acade¢mie Blugare Scienes 51:121-124.
Srivastava A, Strasser R and Govindjee S, 1999. Greening of peas: parallel measurements of 77K emission spectra, O-J-I-P chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 37: 365-392.
Stewart RRC and Bewley JD, 1980. Lipid peroxidation associated aging of soybean axes. Plant Physiology 65: 245-248.
Strasser R, Srivastava A and Tsimilli M, 2000. The fluorescence transient as a tool characterize and screen photosynthetic samples. In: Yunus M, Pathre U and Mohanty P (eds). Probing photosynthesis: Mechanisms, Regulation and Adaptation. Pp: 445-483. Taylor & Francis, London.
Strauss A, Krüger G, Strasser R and Van Heerden P, 2006. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany 56: 147-157.
Tewari R, Kumar P and Sharma P, 2005. Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Science 169: 1037-1045.
Tsimilli M, Eggenberg P, Biro B, Köves K, Vörös I and Strasser R, 2000. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Applied Soil Ecology 15: 169-182.
Van Heerden P, Tsimilli M, Krüger G and Strasser R, 2003. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiologia Plantarum 117: 476-491.
Wyn Jones R, Brady C. J and Speirs J, 1979. Ionic and osmotic-regulation in plants. In: Recent Advances in Biochemistry of Cereals, eds. D. L. Laidman and R. G. Wyn Jones, pp. 63–103. London: Academic Press.
Yeo A and Flowers T. J. 1983 Varietal differences in the toxicity of sodium-ions in rice leaves. Physiologia Plantarum 59: 189–195.
Yoshimura K, Yabute Y, Ishikawa T and Shigeoka S, 2000 Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology 123: 223-233.
Zörb C, Schmitt S, Neeb A, Karl S, Linder M and Schubert S,  2004 The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specie adaptation. Plant Science 167: 91–100.
 
nm�'�`� �� >Adv in Agron 60:75 - 120.
 
 Sheikh F A, Rather  A G and Wani S A, 1999. Genetic variability and inter relationship in Toria (Brassica campestris L. var. Toria). J  Advances in Plant Sciences 12 (1):139 – 143.
Zhang H X J, Hudson N, Williams J P and Blumwald E, 2001. Engineering salt tolerance Brassica plants, characterization of yield and seed oil quality in transgenic plant   with increased vacuolar sodium accumulation. Proc Not Acad Sci USA, 98(22):12832 - 12836.