اثر کادمیم وسیلیسیم بر رشد و برخی ویژگی‌های فیزیولوژیکی چغندر لبویی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز

2 استاد گروه باغبانی، دانشکده کشاورزی، دانشگاه تبریز

3 استاد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس

4 استاد دانشکده‌ی شیمی، دانشگاه تبریز

5 استادیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تبریز

چکیده

کادمیم (Cd) یکی از فلزات سنگین است که افزایش غلظت آن در محیط ریشه گیاه سبب بروز اختلالات متابولیسمی در گیاه می‌گردد. از طرف دیگر، سیلیسیم (Si) به عنوان عنصر کاهش دهنده اثرات سمی برخی عناصرسنگین شناخته شده است. به منظور بررسی اثر Cd و Si بر رشد و ویژگی­های چغندر لبویی (Beta vulgaris L. cv. DarK Red) آزمایش گلخانه‌ای با سه سطح Cd ( صفر، 5/2 و 5 میلی‌گرم در لیتر) ازمنبع سولفات کادمیم و سه سطح Si (صفر، 28 و 56 میلی‌گرم در لیتر) از منبع متاسیلیکات سدیم به صورت فاکتوریل و در قالب طرح بلوک­های کامل تصادفی با چهار تکرار در سال 1386 انجام گرفت. بذور چغندر لبویی در گلدان­های 14 لیتری در بستر پرلایت کاشته شدند. ویژگی­های رشدی و فیزیولوژیکی در طول زمان رشد اندازه­گیری  و پس از رشد غده،  چغندر لبویی برداشت و ویژگی­های آن­ها اندازه‌گیری گردید. نتایج نشان داد که مصرف Cd موجب افزایش معنی‌دار غلظت Cd در برگ‌ها و ریشه چغندر لبویی شد. هم­چنین مصرف Cd باعث کاهش معنی­دار وزن خشک، سطح برگ، تعداد برگ و درصد مواد جامد محلول  (TSS) گردید. با مصرف Cd غلظت هیدروژن پراکساید (H2O2 ) ومالون دی آلدئید (MDA) در برگ­های گیاه چغندر لبویی افزایش معنی‌دار یافت. میانگین غلظت MDA و  H2O2در سطح 5 میلی گرم در لیتر Cd  به ترتیب برابر μM /gFwt48/84 و mM/gFwt 35/2 بود. مصرف Si باعث افزایش معنی‌دار عملکرد گیاه، سطح برگ، تعداد برگ و TSS گردید. با مصرف Si غلظت  H2O2و MDA در برگ­های چغندر لبویی نسبت به تیمار شاهد کاهش معنی‌دار نشان داد. میانگین شدت فتوسنتز در برگ­های گیاهان تحت آزمایش در تیمار شاهد، 5 میلی گرم در لیتر Cd و 56 میلی گرم در لیتر Si به ترتیب برابر با 25/18، 9/7و 76/25 μmol CO2 m-2S-1 بودند. اثرات متقابل بین Si و Cd فقط در میزان کلروفیل برگ وفتوسنتز معنی‌دار بود.  مصرف Si تاثیری بر غلظت Cd در برگ­ها و ریشه چغندر لبویی نداشت، ولی با توجه به اثرات مثبت Si  در وزن خشک و برخی از ویژگی­های فیزیولوژیکی، مصرف آن در محلول غذایی قابل توصیه بوده ولی نیاز به تحقیقات بیشتری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Cadmium and Silicon on Growth and Some Physiological Aspects of Red Beet

نویسندگان [English]

  • F Behtash 1
  • j Tabatabaii 2
  • MJ Malakouty 3
  • MS Sorour-Aldin 4
  • sh Ustan 5
چکیده [English]

Cadmium (Cd) as a heavy metal induces some disorders in normal metabolism in plants. Furthermore, Silicon (Si) is able to ameliorate the deleterious effects of some toxic elements like Cd. Keeping this in view, an experiment was conducted to find out the effects of Cd and Si on growth and some physiological aspects of Beta vulgaris L. cv. Dark Red. The experiment was arranged as a factorial scheme based on  randomized complete block design with four replications. Three levels of Cd (0 , 2.5 and 5 mg L-1) from CdSO4 and three levels of Si (0 , 28 and 56 mg L-1) from Na2SiO3 were added to nutrient solution. Perlite was used as growing media and the seeds of red beet were planted in the pots (14 L). The results showed that Cd addition significantly increased Cd concentration in leaves and roots. Application of Cd significantly decreased photosynthesis rate, chlorophyll content, leaf number, leaf area and total soluble solids (TSS) in the roots.  Additionally, increased Cd concentration in the growing media led to increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentration in leaves. At 5 mg L-1 Cd, concentrations of H2O2 and MDA in leaves were 2.4  mM/g Fwt and 84.5 nM/g Fwt, respectively. The rate of photosynthesis in 5 mg L-1Cd, control and 56 mg L-1 Si treatments were 7.9, 18.25 and 25.76μ mol CO2 m-2s-1, respectively. Application of Si in nutrient solution significantly increased leaf number, leaf area, photosynthesis, chlorophyll content, total soluble solids (TSS) in roots and dry weight in plants. Increased Si in nutrient solution had no effect on the Cd concentration in leaves and roots of red beet. Nevertheles, malondialdehyde (MDA) and H2O2 concentrations in leaves of red beet were reduced with Si addition to the nutrient solution. In general, it is recommendable to take into consideration the benefits of Si addition to red beet growth media, but more investigations are needed

کلیدواژه‌ها [English]

  • Cadmium
  • Chlorophyll
  • H2O2
  • MDA
  • Photosynthesis
  • Red Beet
  • Silicon
ثواقبی غ و ملکوتی م ج، 1379. بررسی نقش روی در کاهش اثرات سوء کادمیم بر عملکرد و کیفیت دانه گندم.  مجله علوم آب و خاک،  موسسه تحقیقات خاک و آب. ویژه نامه کشاورزی پایدار. جلد12، شماره 9، صفحه­های 66 تا 75.
چراتی ع و ملکوتی م ج، 1383. ضرورت کاهش آلاینده‌های کادمیم و نیترات در شالیزارهای شمال کشور (بررسی تاثیر روی و کادمیم بر رشد و ترکیب شیمیایی برنج). کتاب تغذیه متعادل برنج. انتشارات سنا. وزارت جهاد کشاورزی معاونت زراعت.
خانی م، ملکوتی م ج و شریعت س م، 1379. بررسی تغییرات کادمیم در خاکهای شالیزاری و برنج در شمال کشور. مجله علوم آب و خاک موسسه تحقیقات خاک و آب. ویژه نامه کشاورزی پایدار، جلد 12، شماره 9. صفحه­های 19 تا 26.
خلدبرین ب و اسلام زاده ط،1380. تغذیه معدنی گیاهان عالی (ترجمه). انتشارات دانشگاه شیراز.
سماوات س، بایبوردی الف، ملکوتی م ج و طهرانی م،1384. حد مجاز کادمیم در کودهای شیمیایی، محصولات زراعی و باغی. نشریه فنی شماره 437، موسسه تحقیقات خاک و آب. انتشارات سنا.
ملکوتی م ج، بایبوردی الف و طباطبایی س ج ، 1383. مصرف بهینه کود گامی موثر در افزایش عملکرد و بهبود کیفیت و کاهش آلاینده‌ها در محصولات سبزی و صیفی و ارتقای سطح سلامت جامعه. نشر علوم کشاورزی کاربردی. ص 19 تا 30.
Adatia MH and Bestford RT, 1986. The effect of silicon on the cucumber plants grown in recirculating nutrition solution . Annals of Botany 58: 343-351.
Al-aghabary K, Zhu Z and Shi Q, 2004. Influence of silicon supply on chlorophyll content, chlorophyll flurescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition 27(12): 2101-2115.
Aravind P and Prasad MNV, 2004. Zinc protects chloroplasts and associated photochemical function in cadmium exposed Ceratophyllum demersum L., a fresh water macrophyte. Plant Science 166(5): 1321-1327.
Boominathan R and Doran PM, 2002. Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytologist 156: 205-215.
Chen HM , Zheng CR , Tu C and Slen ZG, 2000. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41: 229-234.
Chen J, Zhu C, Lin D and Sun Z, 2007. The effect of Cd on lipid peroxidation , hydrogen peroxide content and antioxidant enzyme activities in Cd-sensitive mutant rice seedlings. Canadian Journal of Plant Science 87: 49-57.
Cho UH and Seo NH, 2005. Oxidative stress in Arabidiopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science 168: 113-120.
Chug IK  and Sawhney  SK, 1999. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiology and Biochemistry 37(4): 297-303.
Dong J , Wu F and Zhang G, 2005. Effect of cadmium on growth and photosynthesis of tomato seedlings. Journal of Zhejiang University Science 6(10): 974-980.
Gong H, Zhu X, Chen K, Wang S and Zhang C, 2005. Silicon alleviates oxidative damage of wheat plants in pot under drought. Plant Science 169: 313-321.
Gunes A, Inal A, Bagci EG, Coban S and Pilbeam DJ, 2007. Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Scientia Horticulturae 113: 113-119.
Hattori T, Sonobe K, Inanaga S, An P and Morita S, 2008. Effects of silicon on photosynthesis of young cucumber seedlings under osmotic stress. Journal of Plant Nutrition 31:1046-1058.
Hsu YT and Kao CH, 2007. Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant and Soil. 291:27-37.
Lagriffoul  A, Mocquot B, Mench M, and Vangronsveld  J, 1998. Cadmium toxicity effects on growth ,mineral and chlorophyll contents, and activities stress releated enzymes in young maize plants (Zea mays). Plant and Soil 200: 241-250.
Liang YC, Wong JWC and Long W, 2005. Silicon-mediated enhacement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58: 475-483.
Liang YC, Sun W, Zhu YG and Christie P, 2006. Mechanism of abiotic stress in higher plants: A review. Environmental Pollution 28: 1-7.
Malik D, Sheoran IC and Singh R, 1992. Carbon metabolism in leaves of cadmium treated Wheat seedlings. Plant Physiology and Biochemistry 30: 223-229.
Neumann D and Nieden UZ, 2001. Silicon and heavy metals tolerance of higher plants. Phytochemistry 56: 685-692.
Ouzounidou G, 1995. Cu-ions mediated changes in  growth, chlorophyll and other ion contents in Cu-tolerant Koleria splenders. Biology  Plantarum 37: 71-79.
Shi X, Zhang C, Wang H and Zhang F, 2005. Effect of Si on the distribution of Cd in rice seedlings. Plant and Soil 272: 53-60.
Trender W and Cieslinski G, 2005. Effect of silicon application on cadmium uptake and distribution in strawberry plants grown on contaminated soils. Journal of Plant Nutrition 28: 917-929.
Van der Vorm PDG, 1987. Dry ashing of plant material and dissolution of the ash in HF for the colorimetric determination of silicon. Communication in Soil Science and Plant analysis 18 (11): 1181-1189. 
Velikova V, Yordanov I and Edreva A, 2000. Oxidative stress and some antioxidant system in acid-rain treated bean plants. Protective role of exogenous polyamines. Plant Science 151: 59-66.
Wagner GJ, 1993. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy 5: 173-212.
Wang LG, Wang YH, Chen Q, Cao WD, Li M and Zhang FC, 2000. Silicon induced cadmium tolerance of rice seedlings. Journal of Plant Nutrition 23: 1397-1406.
Watanabe D, Fuji Wara T, Yone Yama T and Hajashi  H, 2001. Effects of silicon nutrition on metabolism and translocation of nutrients in rice plants. Plant Nutrition-Food Security and Sustainability of Agro-Ecosystem 174: 75-79.
Weige HG, 1985. Inhibition of photosynthetic reactions of isolated intact chloroplast by cadmium. Journal of Plant Physiology 119: 179-189.
Zhang C, Wang L, Nie Q, Zhang W and Zhang FS, 2008. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environmental and Experimental Botany 62: 300-307.
Zhao ZQ, Zhu YG, Kneer R and Smith SE, 2005. Effect of Zinc on Cadmium toxicity-induced oxidative stress in winter wheat seedlings. Journal of Plant Nutrition 28: 1947-1959.
Zhu ZG, Wei GQ, Li J, Qian QQ and Yu JQ, 2004. Silicon alleviates salt stress and increases antioxidants enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science 167: 527-533.