مطالعه صفات کمی مرتبط با پایداری عملکرد دانه در ذرت با استفاده از روش های آماری چند متغیره و تجزیه گرافیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بیوتکنولوژی و اصلاح نباتات، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

3 دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

4 دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، ابوریحان، پاکدشت، ایران

چکیده

اهداف: این مقاله به منظور مطالعه صفات کمی مرتبط با عملکرد‌‌ دانه و بررسی ارتباط صفات مختلف با یکدیگر و انتخاب مهمترین صفات کمی موثر بر عملکرد دانه در هیبرید‌های ذرت انجام گرفت.

مواد و روش‌ها: آزمایش در قالب طرح بلوک‌های کامل تصادفی (RCBD) با سه تکرار در دو سال زراعی 98-1396 در منطقه شیراز انجام گرفت. به منظور حذف اثرات حاشیه، نمونه گیری‌ها از دو ردیف وسط صورت پذیرفت.

یافته‌ها: بر اساس تجزیه واریانس مرکب انجام گرفته در سطح احتمال 01/0 تمامی هیبرید‌ها دارای اختلاف معنی‌داری با هم بودند. همچنین اثر سال × هیبرید نیز در تمامی صفات به جز صفت قطر بلال معنی‌دار شد. بر اساس مقایسه میانگین انجام شده به روش دانکن ژنوتیپ KSC704 به عنوان هیبریدهایی با رتبه برتر شناسایی شد. بر اساس تجزیه همبستگی، صفت عملکرد دانه با صفات عرض دانه و وزن هزار دانه دارای همبستگی مثبتی بودند. همچنین نتایج نمودار همبستگی نیز همبستگی مثبتی را بین صفت عملکرد دانه با صفات طول دانه، وزن هزار دانه، ارتفاع بوته، طول بلال و تعداد ردیف در بلال نشان داد. بر اساس نمودار چندوجهی ژنوتیپ KSC705 نسبت به سایر ژنوتیپ‌ها دارای مطلوبیت بیشتری بود. نمودار رتبه‌بندی ژنوتیپ‌ها بر اساس ژنوتیپ ایده‌آل نیز هیبرید SC647 را به عنوان هیبریدی با مطلوبیت بهتر شناسایی نمود.

نتیجه‌گیری: بر اساس مجموعه صفات مورد بررسی ژنوتیپ‌های KSC704 و KSC705 به عنوان هیبرید‌هایی با رتبه بهتر و ژنوتیپ‌های SC301 و SC302 به عنوان ژنوتیپ‌های نامطلوب شناسایی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Study of quantitative traits related to grain yield stability in maize using multivariate statistical methods and graphical analysis

نویسندگان [English]

  • Seyedhabib Shojaei 1
  • khodadad Mostafavi 2
  • Mahmoud Khosroshahli 1
  • Mohammad Reza Bihamta 3
  • Hossein Ramshini 4
1 Department of Agronomy and Plant Breeding, Damavand Branch, Technical and Vocational University (TVU), Iran
2 Department of Agronomy and Plant Breeding, Karaj Branch, Islamic Azad university, Karaj, Iran.
3 College of Agriculture & Natural Resources (UCAN), University of Tehran, Karaj, Iran.
4 College of Agriculture & Natural Resources, University of Tehran, Aboureyhan campus, Pakdasht, Iran.
چکیده [English]

Background and Objective: This paper was conducted to study the quantitative traits related to grain yield and to investigate the relationship between different traits and to select the most important quantitative traits affecting grain yield in maize hybrids.

Materials and Methods: The experiment was conducted in a randomized complete block design (RCBD) with three replications in the two cropping years of 2017-2018 in Shiraz region. sampling and taking notes were performed from the two middle rows.

Results: Based on the combined analysis of variance at the probability level of 0.01, all hybrids had a significant difference. Also, the effect of hybrid year was significant in all traits except ear diameter. Based on the comparison of the mean performed by Duncan method, two genotypes KSC704 and KSC707 were identified as hybrids with superior rank. Based on the correlation analysis, grain yield had a positive and significant correlation with grain width and 1000-grain weight. Also, the results of the correlation diagram showed a positive and significant correlation between grain yield and grain length, 1000-seed weight, plant height, ear length and number of rows per ear. The drawn polygon diagram also showed that KSC705 genotype is more desirable than other genotypes. Based on the ranking chart of genotypes based on the ideal genotype, SC647 hybrid was identified as a hybrid with better desirability.

Conclusion Based on the studied traits, KSC704 and KSC705 genotypes were identified as better ranked hybrids and SC301 and SC302 genotypes were identified as unfavorable genotypes.

کلیدواژه‌ها [English]

  • Combined analysis of variance
  • maize
  • ideal genotype
  • Polygon diagram
  • correlation
Ahmadi K, Ebadzadeh HR, Abd-Shah H, Kazimian A, Rafiei M.2018. Agricultural statistics of crop years 2016-17. Volume one: Crop production. Ministry of Jehad-e-Agriculture, Planning and Economics Affairs, Information and Communication Technology Center, Tehran, Iran (In Persian).
Akcura M and Kokten K.2017. Variations in grain mineral concentrations of Turkish wheat landraces germplasm. Quality Assurance and Safety of Crops & Foods, 9(2), 153-159.
Ali Q, Ahsan M, Ali F, Aslam M, Khan NH, Munzoor M and Muhammad S.2013. Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life Sciences, 1(1).‏
Balouchzaehi A and Kiani G.2013. Determination of Selection Criteria for Yield improvement in Rice. Journal of Crop Breeding, 5: 75-84. (In Persian).
Beiragi MA, Khorasani SK, Shojaei SH, Dadresan M, Mostafavi K, Golbashy M.2011. A study on effects of planting dates on growth and yield of 18 corn hybrids (Zea mays L.). Journal of Experimental Agriculture International, 110-120.
Chaudhary HK, Kaila V and Rather SA. 2014. Maize. In Alien Gene Transfer in Crop Plants, Volume 2 (pp. 27-50). Springer, New York, NY.‏
Choukan R and Mosavat SA. 2005. Mode of Gene Action of different traits in Maize tester lines. Seed and Plant Improvement Journal, 21: 547-556 (In Persian).
Dehghani H, Omidi H and Sabaghnia N.2008. Graphic analysis of trait relations of rapeseed using the biplot method. Agronomy Journal, 100(5), 1443-1449.‏
Dehghanpour Z.2014. Technical instruction on planting, harvesting and harvesting of corn (grains and forage). Karaj, Ministry of Agriculture. Agricultural Research, Education and Promotion Institute, Seed and Plant Improvement Research Institute, Agricultural Education Publishing.
‏Devi IS, Muhammad S and Mohammed S.2001. Character association and path coefficient analysis of grain yield and yield components in double cross of maize (Zea mays L.). Journal of Crop Research, 21 (3): 335-359.
Dolatabad SS, Choukan R, Hervan EM and Dehghani H.2010. Multienvironment analysis of traits relation and hybrids comparison of maize based on the genotype by trait biplot. American Journal of Agricultural and Biological Sciences, 5(1), 107-113.
Farajzadeh Memari Tabrizi N, Ahari zad S, Rashidi V, Darvish Kajouei F, Khavari Khorasani S. 2017. Evaluation of correlation and regression between traits and grain yield of maize genotypes under normal and dehydration conditions. Journal of Plant Ecophysiology, 9(28): 21-29 (In Persian).
Hamzeh pour G, Tobeh A, Sheikhzadeh P. 2017. Study of correlation and regression analysis between quantitative and qualitative traits of different rapeseed cultivars in different planting arrangements. Journal of Plant Ecophysiology, 31: 159-177 (In Persian).
‏Johnson RA and Wichern DW.2007. Applied multivariate statistical analysis (6th ed). New Jersey, U.S.A: Prentice Hall, Inc.
Kaplan M, Kokten K and Akcura M.2017. Assessment of Genotype× Trait× Environment interactions of silage maize genotypes through GGE Biplot. Chilean journal of Agricultural Research, 77(3), 212-217.‏
Khodaeahm pour Z, Choukan R, Hossein pour B.2011. Multivariate analysis of some quantitative traits in inbred maize lines under heat stress conditions. Journal of Crop Production, 4(2): 31-49 (In Persian).
Moradian P, Kazemi Arbat H, Rezaei ME. 2014. Evaluation of morphological and physiological traits of bread wheat lines and cultivars.  Journal of Plant Ecophysiology, (1): 29. 57-70 (In Persian).
Okoye M, Okwuagwu C, Uguru M, Ataga C and Okolo E.2007. Genotype by trait relations of oil yield in oil palm (Elaeis guineensis Jacq.) based on GT biplot. African Crop Science Conference Proceedings. (Vol. 8, pp. 723-728).‏
Salazar E, Correa J, Araya MJ, Méndez MA and Carrasco B.2017. Phenotypic diversity and relationships among Chilean Choclero maize (Zea mays L.) landraces. Plant Genetic Resources, 15(5), 461-473.‏
‏Shiri, MR, Moharramnejad S, Em J,  Zadehesfahlan MR.2019. Assessment of Different Maize (Zea mays L.) Hybrids under Moghan Climate. Journal of Agricultural Science and Sustainable Production, 29(3),
59-71.‏
Torres VR, Davila JH, Mendoza AB, Godina FR and Maiti RK.2004. Importance of agronomic characteristics in the grain yield of maize under irrigated and rainfed conditions. Crop Research, 27(2), 169-176.‏
Viola G, Ganesh M, Reddy SS and Kumar CV.2003. Studies on Correlation and Path Coefficient Analysis of Elite Baby corn (Zea mays L.), lines. Progressive Agriculture, 3(1and2), 22-24.‏
‏Yan W and Kang MS.2003. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomist. CRC press. Boca Raton, FL.
Yan W.2014. Crop variety trials: Data management and analysis. John Wiley & Sons.
‏Yan W and Rajcan I.2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42(1), 11-20.‏
Yin X, Chasalow SD, Stam P, Kropff MJ, Dourleijn CJ, Bos I and Bindraban PS.2002. Use of component analysis in QTL mapping of complex crop traits: a case study on yield in barley. Plant Breeding, 121(4), 314-319.‏
Zadtot Aghaj S, Kazemi Tabar SK, Amini A and Khalili M.2000. Study traits correlation and path analysis in corn late hybrids in normal and drought stress condition in grain filling stage. In The 6th Crop Production and Breeding Congress. September (pp. 3-6).
‏Zand B and Lalinia AA. 2011. The agronomy of cereals. Peyame_ Noor University Publication. 378 p. (In
Persian).