اثر کودهای زیستی و شیمیایی بر برخی صفات مورفوفیزیولوژیکی و عملکرد کلزا (Brassica napus L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اکوفیزیولوژی گیاهی دانشکده کشاورزی دانشگاه تبریز

2 دانش آموخته کارشناسی ارشد آگرواکولوژی، دانشکده کشاورزی، دانشگاه تبریز، تبریز. ایران.

3 دانشیار دانشکده کشاورزی دانشگاه تبریز

4 دانش آموخته دکتری فیزیولوژی گیاهان زراعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

10.22034/saps.2023.58690.3125

چکیده

مقدمه و هدف: استفاده بی‌رویه از کودهای شیمیایی منجر به آسیب‌های زیست‌محیطی گوناگونی می‌گردد. نیتروژن در تشکیل اسیدهای آمینه، پروتئین‌ها، اسیدهای نوکلئیک، آنزیم‌ها، کلروفیل، ویتامین‌ها، نقش دارد. کاربرد کودهای زیستی یکی از روش‌های مهم در راستای کاهش استفاده از کودهای شیمیایی می‌باشد. کلزا یکی از گیاهان زراعی خانواده براسیکاسه می‌باشد که از منابع مهم تولید روغن نباتی جهان به شمار می‌رود. به دلیل وابستگی کشور به روغن خوراکی وارداتی و نیز اهمیت استفاده از کودهای زیستی سبب گردید تا این پژوهش با هدف بررسی اثرات کودهای زیستی و کود نیتروژنه بر عملکرد و اجزای عملکرد و درصد روغن کلزا اجرا گردد.
مواد و روش‌ها: آزمایش به صورت فاکتوریل در قالب بلوک های کامل تصادفی با سه تکرار اجرا گردید. تیمارهای مورد بررسی شامل کود شیمیایی در سه سطح (عدم مصرف کود و مصرف 125 و 250 کیلوگرم در هکتار نیتروژن) و کودهای زیستی در چهار سطح (عدم کاربرد کود زیستی ، کاربرد ازتوبارور 1، فسفوبارور 2 و ازتوبارور 1 + فسفوبارور 2) بودند.
یافته‌ها: کاربرد سطوح مختلف کود نیتروژنه سبب افزایش عملکرد و اجزای عملکرد کلزا گردید. مصرف کودهای زیستی موجب بهبود وزن خشک بوته، درصد و عملکرد روغن گردید، بیش-ترین تعداد دانه در بوته و عملکرد دانه از ترکیب تیماری کاربرد توأم کودهای زیستی به همراه استفاده از 250 کیلوگرم در هکتار نیتروژن به دست آمد.
نتیجه‌گیری: بر اساس نتایج حاصل از این پژوهش، کاربرد توأم کودهای زیستی ازتوبارور 1 و فسفوبارور 2 در تلفیق با کود نیتروژنه می‌تواند برای سودمندی تولید گیاه کلزا در مزارع توصیه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Impact of Biological and Chemical Fertilizers on some Morphophysiological Traits and Yield of Canola (Brassica napus L.)

نویسندگان [English]

  • Yaeghoub Raei 1
  • Sara Azarnejad 2
  • Safar Nasrollahzadeh 3
  • Younes Kheirizadeh Arough 4
1 Department of Ecophysiology, Faculty og Agriculture, University of Tabriz
2 M.Sc. Graduate of Agroecology, Faculty of Agricultural, University of Tabriz, Tabriz, Iran
3 Assoc. Prof. , Faculty of Agriculture Univ. Tabriz
4 Ph.D. Graduate of Crop Physiology, Faculty of Agricultural and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Abstract
Background & Objectives: One of the crops of the Brassicaceae family, which is regarded as one of the most significant oil plants in the world because of its oil content and ideal fatty acid composition, is canola. Nitrogen is one of the most crucial components that play a role in the synthesis of amino acids, proteins, nucleic acids, enzymes, chlorophyll, vitamins, secondary metabolites and ATP. Chemical fertilizers used carelessly cause a number of environmental problems, such as groundwater contamination, insect and microbe extinction, and decreased soil fertility. Using biological fertilizers is a crucial step in minimizing the use of chemical fertilizers and preventing the adverse impact caused with their application. Due to its wide range of adaptability to most of the country's climatic conditions, canola, one of the most significant oilseed plants in development, has enormous value in reducing dependence on the import of edible oil. Nevertheless, using biological fertilizers will also significantly reduce the negative environmental effects caused by the excessive use of synthetic inputs, particularly commercial fertilizers, in addition to reducing the use of chemical fertilizers. Due to these reasons, the current study was conducted to determine the best combination for nitrogen with biofertilizers in regards to yield, yield components, and percentage of canola oil.
 
Materials and methods: The experiment was conducted as a factorial based on randomized complete blocks design with three replications in a farm located in Marand city of East Azarbaijan province in 2019. Experimental treatments include chemical fertilizer at three levels (no application of fertilizer as a control and application of 125 and 250 kg ha-1 of urea) and bifertilizers at four levels (without biofertilizers as a control, application of Azoto barvar-1, Phosphate barvar-2 and the combined of Azotobarvar-1 + Phosphate barvar-2).
 
Results: Application of different levels of urea fertilizer increased plant height, leaf area, and number of pods per plant, number of seeds per pod, harvest index, chlorophyll index, plant dry weight, oil percentage, and green cover percentage of canola. However, it had non-significant effect on oil yield. On the other hand, the application of bifertilizers improved plant dry weight, oil percentage and oil yield, but did not have a significant effect on the other studied traits. The interaction effect between chemical fertilizer and biofertilizer had significant effect on the number of seeds and yield of the plant. The highest number of seeds per plant and grain yield was obtained at the combination of biofertilizers with the application of 250 kg ha-1 of urea. Combined use of Azotobarvar-1 + Phosphate barvar-2 biofertilizers with the consumption of 125 and 250 kg ha-1 of urea improved the yield by 42.9% and 81.4%, respectively.
 
Conclusion: Based on the results of this study, the combined application of Azotobarvar-1 + Phosphate barvar-2  biofertilizers along with nitrogen fertilizer due to the improvement of yield, yield components and oil content can be recommended for profitable of canola production in fields.
 

کلیدواژه‌ها [English]

  • Azotobarvar-1
  • Nitrogen
  • Oil
  • Phosphate barvar-2
  • Yield
Abbasdokht H, Salmanzadeh S and Gholami A. 2015. The comparison of qualitative and quantitative of soybean (Glycine max L.) affected by double inoculation with Barvar-2 and Rhizobium japonicum bacteria at hydro- osmo priming condition. Iranian Journal of Field Crop Science, 46(4): 569-581. (In Persian). https://doi.org/10.22059/IJFCS.2015.56807
Adams MW and Grafius JE. 2001. Yield compensation alternative interperation. Crop Science, 11: 33-35. https://doi.org/10.2135/cropsci1971.0011183X001100010011x
Adl HR. 2007. Estimation of leaf biomass and leaf area index of two major species in Yasuj forests. Iranian Journal of Forest and Poplar Research, 15(4): 417-426 (In Persian).
Ahmed NU, Ferdous Z, Uddin Mahmud N, Hossain A, Asad MD and Zaman UZ. 2017. Effect of split application of nitrogen fertilizer on the yield and quality of potato (Solanum tuberosum). International Journal of Natural and Social Sciences, 4(2): 60-66.
Ajam Nowroozy H and Mirzaei H. 2007. Effects of planting date and different amounts of nitrogen and phosphorus fertilizers on yield yield components, quality and quantity oil of canola (Talaeieh cultivar) in gorgan. Abstracts of Crop Science and Plant Breeding Congress. Mazandaran. Iran. (In Persian).
Alahi A, Hossain MI, Kabir K, Shahjahan M, Arefin SMA and Hosain MT. 2014. Effect of phosphorus and plant spacing on the growth and yield of lettuce. Advance in Agriculture and Biology, 2(1): 1-7. https://doi.org/ 10.15192/PSCP.AAB.2014.2.1.17
Arshad MJ, Freed S, Akbar S, Akmal M and Tahira Gul H. 2013. Nitrogen fertilizer application in maize and its impact on the development of chilo partellus (Lepidoptera: Pyralidae). Pakistan Journal of Zoology, 45(1): 141-147.
Banuelos GS, Bryla DR and Cook CG. 2002. Vegetative production of kenaf and canola under irrigation in central California. Industrial Crops and Products, 15: 237-245. https://doi.org/10.1016/S0926-6690(01)00119-4
Barari Tari D, Daneshian J, Amiri E, Hosein A, Rad S and Moumeni A. 2013. Investigation chlorophyll condition at different nitrogen fertilization methods in rice by applied mathemathics relations (Oryza sativa). Middle-East Journal of Scientific Research, 14(8): 1056-1058. https://doi.org/10.5829/idosi.mejsr.2013.14.8.586
Barman M, Paul S, Guha Choudhury A, Roy P and Sen J. 2017. Biofertilizer as prospective input for sustainable agriculture in India. International Journal of Current Microbiology and Applied Sciences, 6(11): 1177-1186. https://doi.org/10.20546/ijcmas.2017.611.141
Bybordi A. 2010. Effects of salinity and N on the growth, photosynthesis and N status of canola (Brassica napus L.). Notulae Scientia Biologicae, 2(2): 92-97. https://doi.org/10.15835/nsb223532
Choudhury A and Kennedy IR. 2004. Prospects and potentials for systems of biological nitrogen fixation in
sustainable rice production. Biology and Fertility of Soils, 39: 219-227. https://doi.org/10.1007/s00374-003-0706-2
Dahmardeh M. 2013. Effect of different bio fertilizers on growth and yield of canola (Brassica napus L) var RGS 003. Journal of Agricultural Science, 5: 56-67. http://dx.doi.org/10.5539/jas.v5n9p143
El-Lithy M, El-Batanony N, Moreno S and Bedmar E. 2014. A selected rhizobial strain isolated from wildgrown Medicago monspeliaca improves productivity of non-specific host Trifolium alexandrinum. Applied Soil Ecology, 73: 134-139. https://doi.org/10.1016/j.apsoil.2013.08.013
Etemadi F, Madah Hosseini S, Dashti H and Akhgar A. 2014. Investigation of the effect of plant growth promoting rhizobacteria on some growth indices and yield parameters of safflower under different soil salinity levels. Journal of Crop Production and Processing, 4(11): 77-87. (In Persian)
Hamzei J, Seyedi M and Babaei M. 2015. Effect of density and nitrogen on seed quantity and quality of winter rapeseed in Hamedan conditions. Crop Production, 8(1): 143-159. (In Persian). DOR: 20.1001.1.2008739.1394.8.1.8.8
Hassani F, Ardakani M, Asgharzade A, Paknezhad F and Hamidi A. 2014. Efficiency of mycorrhizal fungi and phosphate solubilizing bacteria on phosphorus uptake and chlorophyll index in potato plantlets. International Journal of Biosciences, 4: 244-251. http://dx.doi.org/10.12692/ijb/4.1.244-251
Hokmalipour S and Darbandi MH. 2011. Effects of nitrogen fertilizer on chlorophyll content and other leaf indicate in three cultivars of maize (Zea mays L.). World Applied Sciences Journal, 15(12): 1780-1785.
Ibrahim MEH, Zhu X, Zhou G, Yousif Adam Ali A, Ahmad I and Ali Farah G. 2018. Nitrogen fertilizer alleviated negative impacts of nacl on some physiological parameters of wheat. Pakistan Journal of Botany, 50(6): 2097-2104.
Imran A and Al-Tawaha AR. 2023. Regenerating potential of dual purpose rapeseed (Brassica napus L.) as influenced by decapitation stress and variable rates of phosphorous. Communications in Soil Science and Plant Analysis, 54(4): 534-543. https://doi.org/10.1080/00103624.2022.2118297
Itelima JU, Bang WJ, Onyimba IA, Sila MD and Egbere OJ. 2018. Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review. Direct Research Journal of Agriculture and Food Science, 6(3): 73-83. http://hdl.handle.net/123456789/1999
Kader MA, Main MH and Hoque MS. 2002. Effects of Azotobacter inoculant on the yield nitrogen uptake by wheat. Online Journal of Biological Sciences, 2(4): 259-261.
Kappen L, Schultz G, Gruler T and Widmoser P. 2000 .Effect of N-fertilization on shoots and roots of rape (Brassica napus L.) and consequences for the soil matric potential. Journal of Plant Nutrition and Soil Science, 163(5): 481- 489. https://doi.org/10.1002/1522-2624(200010)163:5<481::AID-JPLN481>3.0.CO;2-7
Kasraie P, Nasri M, Khalatbari M and Zakerin HR. 2013. The effects of application of plant growth promoting rhizobacteria on physiological characteristics and yield of canola. Technical Journal of Engineering and Applied Sciences, 3: 121-125.
Kaur G, Brar SS, Singh CB, Dhingra M and Singh KB. 2023. Impact of tillage, irrigation regimes and nitrogen levels on soil moisture dynamics, growth and productivity of canola (Brassica napus). International Journal of Plant & Soil Science, 35(17): 320-336. https://doi.org/10.9734/ijpss/2023/v35i173214
Kenneth OC, Chibuzor Nwadibe E, Uchenna Kalu A and Victor Unah U. 2018. Plant growth promoting rhizobacteria (PGPR): A novel agent for sustainable food production. American Journal of Agricultural and Biological Sciences, 14: 35-54. https://doi.org/10.3844/ajabssp.2019.35.54
Khamadi F, Mesgarbashi M, Hasibi P, Farzaneh M and Enayatzamir N. 2015. Influence of crop residue and nitrogen levels on nutrient content in grain wheat. Applied Field Crops Research, 28(4): 158-166. (In Persian). https://doi.org/10.22092/AJ.2016.106753
Kheradmand MA, Shahmoradzadeh Fahraji S, Fatahi E and Mahdi Raoofi M. 2014. Effect of water stress on oil yield and some characteristics of brassica napus. International Research Journal of Applied and Basic Sciences, 8: 1447-1453.
Kiani M, Farnia A and Shaban M. 2013. Changes of seed yield, seed protein and seed oil in rapeseed (Brassica napus L.) under application of different bio fertilizers. International journal of Advanced Biological and Biomedical Research, 1: 1170-1178.
Kubsad VS, Naik VR, Hanumantharaya L and Nekar MM. 2008. Phosphorus management in mungbean-safflower sequence cropping in vertisols under rainfed conditions. In Safflower: unexploited potential and world adaptability. 7th International Safflower Conference, Wagga Wagga, New South Wales, Australia, 3-6 November, 2008. (pp. 1-4). Agri-MC Marketing and Communication.
Kulachi MNK, Zaib Jamali A, Waheed Solangi A, Ali Siyal M, Ali Siyal Z and Rais N. 2016. Integrated effects of n-p-k and bio-fertilizer on the growth and yield of rapeseed varieties. Science International, 28(5): 4973-4979.
Lin Y, Watts DB, Torbert HA and Howe JA. 2020. Influence of nitrogen rate on winter canola production in the southeastern United States. Agronomy Journal, 112: 2978–2987. https://doi.org/10.1002/agj2.20197
Madani H, Malboobi MA, Bakhshkelarestaghi K and Stoklosa A. 2011. Biological and chemical phosphorus fertilizers effect on yield and p accumulation in rapeseed (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(2): 210-214. https://doi.org/10.15835/nbha4026079
Maghsudi E, Ghalavand A and Aghaalikhan M. 2014. The effect of different levels of fertilizer (organic, biological and chemical) on morphological traits and yield of maize single cross hybrid 704. Applied Field Crops Research, 27(104): 129-135. https://doi.org/10.22092/AJ.2014.101820
Majd S and Emam Y. 2013. Effects of cycocel and nitrogen application on yield and yield components of autumn-grown oilseed rape at different plant densities. Journal of Crop Production and Processing, 3(7): 123-132. (In Persian)
Mamnabia S, Nasrollahzadeh S, Ghassemi-Golezani G and Raei Y. 2020. Morpho-physiological traits, grain and oil yield of rapeseed (Brassica napus L.) affected by drought stress and chemical and bio-fertilizers. Journal of Agricultural Science and Sustainable Production, 30(3): 359-378. (In Persian). DOR: 20.1001.1.24764310.1399.30.3.21.6
Marchuk А, Likhanov VA and Lopatin OP. 2019. Alternative energy: methanol, ethanol and alcohol esters of rapeseed oil as eco-friendly biofuel. Theoretical and Applied Ecology, 3: 80-86. https://doi.org/10.25750/1995-4301-2019-3-080-086
Mohamed D, Fergany M, Elhabbasha EF and El-temsah M. 2022. Productivity improvement of canola genotypes under salinity stress conditions by integration between mineral and nano-Scale forms of nitrogen fertilizer. Arab Universities Journal of Agricultural Sciences, 30(2): 1-16. https://doi.org/10.21608/ajs.2022.140893.1481
Mohammadi K, Heidari G, Khalesro S and Sohrabi Y. 2011. Soil management, microorganisms and organic matter interactions: A review. African Journal of Biotechnology, 10(84): 19840-19849. https://doi.org/10.5897/AJBX11.006
Mohammadi K, Sohrabi Y, Heidari G, Khalesro S and Majidi M. 2012. Effective factors on biological nitrogen fixation. African Journal of Agricultural Research, 7(12): 1782-1788. https://doi.org/10.5897/AJARX11.034
Mohammadzadeh H and Naeini B. 2007. Effects of salinity stress on morphology and yield of two cultivars of canola (Brassica napus L.). Journal of Agronomy, 6(3): 409-414.
Mostafavian SR, Pirdashti H, Ramzanpour MR, Andarkhor A and Shahsavari A. 2008. Effect of mycorrhizae, thiobacillus and sulfur nutrition on the chemical composition of soybean (Glycine max L.) seed. Pakistan Journal of Biological Science, 11(6): 826-835. https://doi.org/10.3923/pjbs.2008.826.835
Nagananda GS, Das A, Bhattacharya S and Kalpana T. 2010. In vitro studies on the effects of bio-fertilizers (Azotobacter and Rhizobium) on seed germination and development of Trigonella foenum-graecum L. using a novel glass marble containing liquid medium. International Journal of Botany, 6(4): 394-403.
Noreldin NA, Habbal MS, Hamad MA and Hamed MA. 2003. Yield response of two rapeseed cultivars to irrigation intervals and nitrogen fertilizer under sandy soil conditions. Annals of Agricultural Science, 38(2): 511-519.
Ntanos DA and Koutroubas SD. 2002. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Research, 74(1): 93-101. https://doi.org/10.1016/S0378-4290(01)00203-9
Ojha SK, Benjamin JC and Kumar AK. 2016. Effect of compost in combination with pgpr on growth of tomato (Lycopersicon esculentum) plant. International Journal of Agricultural Science and Research, 6: 63-72.
Ozer H. 2003. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. European Journal of Agronomy, 19(3): 453-463. https://doi.org/10.1016/S1161-0301(02)00136-3
Öztürk Ö. 2010. Effects of source and rate of nitrogen fertilizer on yield, yield components and quality of winter rapeseed (Brassica napus L.). Chilean Journal of Agricultural Research, 70(1): 132-141. https://hdl.handle.net/20.500.12395/24868
Patel HD, Krishnamurthy R and Azeez MA. 2016. Effect of biofertilizer on growth, yield and bioactive component of Plumbago zeylanica (Lead Wort). Journal of Agricultural Science, 8(5): 142-155.  http://dx.doi.org/10.5539/jas.v8n5p141
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P and Mommer L. 2011. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193: 30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
Rahi AR. 2013. Effect of nitroxin biofertilizer on morphological and physiological traits of Amaranthus retroflexus. Iranian Journal of Plant Physiology, 4(1): 899-905. (In Persian)
Raj A. 2022. Effect of biofertilizer and sulphur on growth and yield of rapeseed (Brassica napus L.). The Pharma Innovation Journal, 11(7): 1503-1505
Sabagh A, Elhamid Omar A, Saneoka H and Barutçular C. 2015. Evaluation agronomic traits of canola (Brassica napus L.) under organic, bio- and chemical fertilizers. Dicle University Institute of Natural and Applied Science Journal, 4(2) : 59-67.
Sadeghi SMM and Miri N. 2022. Ground-based methods for direct measuring of leaf area index (LAI). Human and Environment, 20(1): 105-116. (In Persian)
Schoebitz M, Mengual C and Roldan A. 2014. Combined effects of clay immobilized Azospirillum brasilense and Pantoea dispersa and organic olive residue on plant performance and soil properties in the revegetation of a semiarid area. Science Total Environment, 466: 67-73. https://doi.org/10.1016/j.scitotenv.2013.07.012
Seyed Sharif R, Seyyedi MN and Zaefizadeh M. 2012. Influence of various levels of nitrogen fertilizer on grain yield and nitrogen use efficiency in canola cultivars. Journal of Crops Improvement, 13(2), 51-60. (In Persian). DOR: 20.1001.1.83372008.1390.13.2.5.1
Seyed Sharifi R, Namvar A and Seyed Sharifi, R. 2017. Grain filling and fatty acid composition of safflower fertilized with integrated nitrogen fertilizer and biofertilizers. Pesquisa Agropecuaria Brasileira, 52: 236-243. https://doi.org/10.1590/S0100-204X2017000400003
Shata SM, Mahmoud SA and Siam HS. 2007. Improving calcareous soil productivity by integrated effect of intercropping and fertilizer. Research Journal of Agriculture and Biological Sciences, 3: 733-739.
Shehata MM and El-Khawas SA. 2003. Effect of two biofertilizers on growth parameters, yield characters, nitrogenous components, nucleic acids content, minerals, oil content, protein profiles and DNA banding pattern of sunflower (Helianthus annus L. cv. Vedock) yield. Pakistan Journal of Biological Sciences, 6(14): 1257-1268. https://doi.org/10.3923/pjbs.2003.1257.1268
Shokri Vahed H, Shahinrokhsar P and Heydarnezhad F. 2012. Performance of phosphate solubilizing bacteria for improving growth and yield of rice (Oryza Sativa L.) in the presence of phosphorus fertilizer. International Journal of Agriculture and Crop Sciences, 4: 1228-1232.
Soleimanzadeh H, Habibi D, Ardakani MR, Paknejad F and Rejali F. 2010. Response of sunflower (Helianthus annuus L.) to inoculation with azotobacter under different nitrogen levels. American-Eurasian Journal of Agriculture and Environment Science, 7 (3): 265-268.
Szydłowska-Czerniak A, Karlovits G, Hellner G, Dianoczki C and Szłyk, E. 2010. Effect of enzymatic and hydrothermal treatments of rapeseeds on quality of the pressed rapeseed oils: Part I: Antioxidant capacity and antioxidant content. Process Biochemistry, 45(1): 7-17. https://doi.org/10.1016/j.procbio.2009.09.014
Tohidinia MA, Mazaheri D, Bagher-Hosseini SM and Madani H. 2013. Effect of biofertilizer Barvar-2 and chemical phosphorus fertilizer application on kernel yield and yield components of maize (Zea mays cv. SC704). Iranian Journal of Crop Sciences, 15(4). 295-307. (In Persian)
Xing D and Wu Y. 2014. Effect of phosphorus deficiency on photosynthetic inorganic carbon assimilation of three climber plant species. Botanical Studies, 55(1): 1-8. https://doi.org/10.1186/s40529-014-0060-8
Yaghoubian I, Ghassemi-Golezani K and Raei Y. 2018. Changes in green cover and chlorophyll and carotenoid contents of milk thistle (Silybum marianum L.) in response to seed hydro-priming and water deficit. Iranian Journal of Seed Sciences and Research, 5(2), 59-70. (In Persian). https://doi.org/10.22124/JMS.2018.2911
Yahbi M, Nabloussi A, Maataoui A, El Alami N, Boutagayout A and Daoui, K. 2022. Effects of nitrogen rates on yield, yield components, and other related attributes of different rapeseed (Brassica napus L.) varieties. OCL, 29: 8. https://doi.org/10.1051/ocl/2022001
Yasari E, Azadgoleh MR, Mozafari S and Alashti M. 2009. Enhancement of growth and nutrient uptake of rapeseed (Brassica napus L.) by applying mineral nutrients and bio fertilizers. Pakistan Journal of Biological Science, 15: 12(2): 127-33. https://doi.org/10.3923/pjbs.2009.127.133 
Yin W, Tao L, Xiao-Kun L, Tao R, Ri-Huan C and Jian-Wei L. 2015. Nutrient deficiency limits population development, yield formation, and nutrient uptake of direct sown winter oilseed rape. Journal of Integrative Agriculture, 14(4): 670-680. https://doi.org/10.1016/S2095-3119(14)60798-X
Zamani Z, Zeinali H, Masood Sinaki J and Madani H. 2014. Effect of nitrogen and phosphorous fertilizers on the yield and secondary metabolites of medicinal plant Rubia tinctorum L. under saline conditions. Iranian Journal of Plant Physiology, 4(2): 949-955. (In Persian)
Zang PH and Sedum PJ. 2005. Interactions among phosphorous, nitrogen and growth in oilseed rape. Canadian Journal of Plant Science, 74(3): 173-181.
Zangani E, Afsahi K, Shekari F, Mac Sweeney E and Mastinu A. 2021. Nitrogen and phosphorus addition to soil improves seed yield, foliar stomatal conductance, and the photosynthetic response of rapeseed (Brassica napus L.). Agriculture, 11(6): 483. https://doi.org/10.3390/agriculture11060483
Zuo Q, Liu J, Wang L, Yang G and Leng S. 2020. Yield, dry matter and N characteristics in canola as affected by fertilizer N rate and split-application ratio under high soil fertility condition. Journal of Plant Nutrition, 43(5): 655-666. https://doi.org/10.1080/01904167.2019.1701026