تاثیر ذخیره‌سازی لاروهای پروانه موم‌خوار بزرگ،Galleria mellonella L. در دماهای پایین روی کارایی زنبور پارازیتوئیدHabrobracon hebetor Say.

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه گیاهپزشکی، دانشکده کشاوزی، دانشگاه شهید مدنی آذربایجان

2 دانش‌آموخته کارشناسی ارشد، گروه گیاه‌پزشکی، دانشکده کشاوزی، دانشگاه شهید مدنی آذربایجان

3 دانشیار گروه گیاه‌پزشکی، دانشکده کشاوزی، دانشگاه شهید مدنی آذربایجان

10.22034/saps.2024.62986.3268

چکیده

چکیده
اهداف: هدف آزمایش بررسی تاثیر مدت زمان­های مختلف ذخیره­سازی لاروهای سن سوم پروانه موم­خوار بزرگ،Galleria mellonella L. (Lepidoptera: Pyralidae)  در دماهای 4 و 12 درجه سلسیوس، روی پارامترهای زیستی و جمعیتی زنبور پارازیتوئید Habrobracon hebetor Say. (Hymenoptera: Braconidae) بود.
 
مواد و روش­ها: این آزمایش به صورت فاکتوریل بر پایه طرح کاملا تصادفی در گروه گیاه­پزشکی دانشگاه شهید مدنی آذربایجان انجام گرفت. فاکتور اول شامل دما در دو سطح (4 و 12 درجه سلسیوس) و فاکتور دوم شامل مدت زمان نگهداری در دو دمای یاد شده در پنج سطح (صفر به عنوان شاهد، 1، 3، 7 و 15 روز) بود.   
 
یافته­ها: نتایج نشان داد ذخیره­سازی لاروهای سن سوم پروانه موم­خوار بزرگ،G. mellonella  در دمای 4 و 12 درجه سلسیوس تا 15 روز، موجب کاهش پارامترهای زیستی، تولید مثلی و جمعیتی زنبور پارازیتوئید H. hebetor شد. میانگین پارامترهای زیستی و تولید مثلی زنبور پارازیتوئید در تیمارهای دمای 12 درجه سلسیوس تفاوت معنی­داری با شاهد نشان ندادند. نرخ پارازیتیسم و نسبت جنسی زنبور تحت تاثیر تیمارهای آزمایش قرار نگرفت. طول عمر، طول دوره تخم­ریزی و زادآوری زنبور با افزایش مدت زمان نگهداری میزبان در دماهای مورد بررسی کاهش یافت. کم­ترین طول عمر (8/0 ± 56/24 روز)، طول دوره تخم­ریزی (87/0 ± 91/23 روز)، زادآوری (12/1 ± 46/245 تخم) و نرخ رشد جمعیت زنبور (r) (004/0 ± 2425/0) روی لاروهای میزبانی که به مدت پانزده روزه در دمای 4 درجه سلسیوس نگهداری شده بودند، به­دست آمد.
 
نتیجه­ گیری: جهت پرورش زنبور پارازیتوئید H. hebetor می­توان لاروهای پروانه موم­خوار بزرگ،G. mellonella  را تا دو هفته در دمای 12 درجه سلسیوس و حداکثر یک هفته در دمای 4 درجه سلسیوس نگهداری نمود. 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Cold Storage of Galleria mellonella L. on the Fitness of Habrobracon hebetor Say

نویسندگان [English]

  • Nahid Vaez 1
  • Pari Dastmalchi 2
  • Ali Mehrvar 3
1 Assistant Professor, Dept. of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University
2 M.Sc. Student, Dept. of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University
3 Associate Professor, Dept. of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University
چکیده [English]

Abstract
Background and Objective: The aim of this experiment was to investigate the effect of different storage periods of the third instar larvae of the greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae) at 4 and 12ºC, on the biological and population parameters of Habrobracon hebetor Say. (Hymenoptera: Braconidae).
 
Materials and Methods: This study was carried out in a factorial based on completely randomized design in the Plant Protection Department of Azarbaijan Shahid Madani University. The first factor was consisted of the temperature at two levels (4 and 12ºC) and the second factor was including the duration of storage at five levels (0 as control, 1, 3, 7 and 15 days).
 
Results: The results showed that the storage of the third instar larvae of the greater wax moth, G. mellonella at 4 and 12ºC for 15 days, decreased the biological, reproductive and population parameters of the H. hebetor. The mean biological and reproductive parameters in 12ºC treatments did not show any significant difference with the control. Parasitism rate and sex ratio were not affected by experimental treatments. The longevity, the oviposition period and fecundity of the H. hebetor decreased with the increase in the cold storage duration of the host. The lowest longevity (24.56±0.8 days), oviposition period (23.91±0.87 days), fecundity (245.46±1.12 eggs) and population growth rate (r) (0.2425±0.004) were observed in 15 days' treatment at 4ºC.
Conclusion: To mass rearing of H. hebetor, the larvae of the greater wax moth, G. mellonella can be kept for two weeks at 12ºC and and for a maximum of one week at 4ºC.
 

کلیدواژه‌ها [English]

  • Fecundity
  • Galleria mellonella
  • Habrobracon hebetor
  • Mass Rearing
  • Parasitism Rate
  • Population Growth Rate
 Abbes K, Zouba A, Harbi A and Chermiti B. 2020. Effect of cold storage on the performance of Trichogramma bourarachae (Pintureau and Babault) (Hymenoptera: Trichogrammatidae). Egyptian Journal of Biological Pest Control, 30:27. https://doi.org/10.1186/s41938-020-00232-1
 
Abou El-Ela AS, Dessoky ES, Masry S, Arshad A, Munawar A, Qamer S, Abdelkhalek A, Behiry SI and Kordy A. 2021. Plasticity in life features, parasitism and super-parasitism behavior of Bracon hebetor, an important natural enemy of Galleria mellonella and other lepidopteran host species. Saudi Journal of Biological Science. 28(6): 3351-3361. https://doi.org/10.1016/j.sjbs.2021.02.082
 
Afshari A and Nazari Fandokht E. 2019. Effect of sugar concentration and feeding duration on the cold tolerance of Bracon hebetor Say adults. Plant Pest Research, 8(4): 55-69. (In Persian). DOI:10.22124/IPRJ.2019.3306
 
Alam M, Alam S, Miah M, Mian M and Hossain M. 2015. Mass rearing of Bracon hebetor (Hymenoptera: Braconidae) on wax moth, Galleria mellonella (Lep. Pyralidae) with varying density of parasitoid and the host. Journal of Crop Protection, 5(1): 39–48. http://jcp.modares.ac.ir/article-3-7636-en.html
 
Aliabadi A, Afshari A and Yazdanian M. 2019. Effect of sugar feeding frequency and mating status on the cold storage efficacy of adult Bracon hebetor Say (Hymenoptera: Braconidae). Plant Protection (Scientific Journal of Agriculture), 42(2): 19-37. (In Persian). DOI:10.22055/ppr.2019.14744
 
Anwar M, Zain ul Abdin, Abbas SK, Tahir M, Hussain F and Manzoor A. 2016. Effect of cold storage on the survival, sex ratio and longevity of ectoparasitoid, Bracon hebetor (Say) (Hymenoptera: Braconidae). Pakistan Journal of Zoology, 48(6): 1775-1780.
 
Amini A, Hosseini M, Sadeghi H and Goldansaz SH. 2024. Effect of cold storage on performance of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) reared on Ephestia kuehniella and Ectomyelois ceratoniae. Journal of Entomological Society of Iran, 44(2): 129–139. https://doi.org/10.61186/jesi.44.4.2
 
Amir-Maafi M and Chi H. 2006. Demography of Habrobracon hebetor (Hymenoptera: Braconidae) on two pyralid hosts (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 99: 84-90. https://doi.org/10.1603/0013-8746(2006)099[0084:DOHHHB]2.0.CO;2
 
Askari Seyahooei M, Mohammadi-Rad A, Hesami S, Bagheri A. 2018. Temperature and exposure time in cold storage reshape parasitic performance of Habrobracon hebetor (Hymenoptera: Braconidae). Journal of Economic Entomology, 111: 564–569. https://doi.org/10.1093/jee/toy004
 
Attaran, MR. 1996. Effect of laboratory hosts on biological attributes of parasitoid wasp Bracon hebetor Say. M. Sc. Dissertation, Tarbiat Modares University, Tehran, 77 p. (In Persian).
 
Augustine NM and Shera PS. 2024. Effect of cold storage on the fitness of Fulgoraecia melanoleuca (Fletcher) (Lepidoptera: Epipyropidae), an ecto-parasitoid of Pyrilla perpusilla (Walker) (Hemiptera: Lophopidae), International Journal of Pest Management. https://doi.org/10.1080/09670874.2024.2334232
 
Bale JS. 1996. Insect cold hardiness: a matter of life and death. European Journal of Entomology, 93: 369-382.
 
Birch LC. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology, 17: 15-26. https://doi.org/10.2307/1605
 
Carey JR. 1993. Applied demography for biologists with special emphasis on insects. Oxford University Press UK.
 
Chen H, Zhang H, Zhu KY and Throne J. 2013. Performance of diapausing parasitoid wasps, Habrobracon hebetor, after cold storage. Biological Control, 64(3): 186-94.  
 
Coilent H and Boivin G. 2011. Insect parasitoids cold storage: A comprehensive review of factors of variability and consequence.  Biological Control, 58: 83–95. https://doi.org/10.1016/j.biocontrol.2011.04.014
 
Colinet H and Hance T. 2010. Interspecific variation in the response to low temperature storage in different aphid parasitoids. Annals of Applied Biology, 156: 147-156.https://doi.org/10.1111/j.1744-7348.2009.00374.x
 
Dabhi MR, Korat DM and Vaishnav PR. 2013. Reproductive parameters of Bracon hebetor Say on seven different hosts. African Journal of Agricultural Research, 8(25): 3251-354.
 
Doherty J-F, Guay J-F and Cloutier C. 2017. Early springtime water absorption by overwintering eggs of Monandrus abietinus (Hemiptera: Aphididae): possible implications for cold hardiness and diapause termination. Canadian Entomologist, 150: 174–179. https://doi.org/10.4039/tce.2017.61
 
Elbehery HH. 2024. Effect of pupal cold storage on the life table parameters of larval ectoparasitoid Bracon hebetor (Say) (Hymenoptera: braconidae). Archives of Phytopathology and Plant Protection, 57(2): 142- 160.  https://doi.org/10.1080/03235408.2024.2336303
 
Eliopoulos, PA and Stathas GJ. 2008. Life table of Habrobracon hebetor (Hym.: Braconidae) parasitizing Anagasta kuehniella and Plodia interpunctella (Lep.: Pyralidae): effect of host density. Journal of Economic Entomology, 101: 982-988. https://doi.org/10.1093/jee/101.3.982
 
Faal Mohammad-Ali, H and Shishebor P. 2013. Biological parameters of Bracon hebetor (Hymenoptera: Braconidae) parasitizing Ephestia kuehniella (Lepidoptera: Pyralidae): effect of host diet. Journal of Crop Protection, 2(4):  411-419. https://sid.ir/paper/239141/en
 
Fathipour Y, Talaee L, Bagheri A, Talebi AA and Khajehali J. 2020. Age stage, two-sex life table of Habrobracon hebetor (Braconidae) on Spodoptera exigua (Noctuidae) reared on different sugar beet genotypes. Bulletin of Entomological Research, 110(4): 542-549. https://10.1017/S0007485319000919
 
Filho SRP, Leite GLD, Soares MA, Alvarenga AC, Paulo PD, Santos LDT and Zanuncio JC. 2014. Effects of duration of cold storage of host eggs on percent parasitism and adult emergence of ten trichogrammatidae species. Florida Entomologist, 97(1): 14–21.  https://doi.org/10.1653/024.097.0102
 
Foerster LA and Doetzer AK 2006. Cold storage of the egg parasitoid Trissolcus basalis (Wollaston) and Telenomus podisi Ashmead (Hymenoptera: Scelionidae). Biological Control, 36: 232-237. https://doi.org/10.1016/j.biocontrol.2005.10.004
 
Ferguson LV, Kortet R and Sinclair BJ. 2018. Eco-immunology in the cold: the role of immunity in shaping the overwintering survival of ectotherms. Journal of Experimental Biology, 221: jeb163873.https://doi.org/10.1242/jeb.163873
 
Gao S, Tang Y, Wei K, Wang X, Yang Z and Zhang Y. 2016. Relationships between body size and parasitic fitness and offspring performance of Sclerodermus pupariae Yang et Yao (Hymenoptera: Bethylidae). PLoS ONE, 11, e0156831. https://doi.org/10.1371/journal.pone.0156831
 
Ghimire MN and Phillips TW. 2010. Suitability of different lepidopteran host species for development of Bracon hebetor (Hymenoptera: Braconidae). Environmental Entomology, 39(2): 449-458. https://doi.org/10.1603/EN09213
 
Hahn DA and Denlinger DL. 2011. Energetics of insect diapause. Annual Review of Entomology, 56: 103–121. https://doi.org/10.1146/annurev-ento-112408-085436
 
Hance T, van Baaren J, Vernon P and Boivin G. 2007. Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology, 52: 107–126.
 
Hasan MdM, Hasan MdM, Rahman ASMS, Athanassiou CG, Tussey DA and Hahn DA. 2022. Induced dormancy in Indian meal moth Plodia interpunctella (Hübner) and its impact on the quality improvement for mass rearing in parasitoid Habrobracon hebetor (Say). Bulletin of Entomological Research 112: 766–776. https://doi.org/10.1017/S0007485322000153
 
Ismail M, Vernon P, Hance T and van Baaren J. 2010. Physiological costs of cold exposure on the parasitoid Aphidius ervi, without selection pressure and under constant or fluctuating temperatures. BioControl, 55(6): 729-740. https://doi.org/10.1007/s10526-010-9303-0
 
Kidane D, Ferrante M, Man XM, Liu WX, Wan FH and Yang NW. 2020. Cold storage effects on fitness of the whitefly parasitoids Encarsia Sophia and Eretmocerus hayati. Insects, 11(7): 428: 1-13. https://doi.org/10.3390/insects11070428
 
Kidane D, Ferrante M, Man XM, Liu WX, Wan FH and Yang NW. 2023. Investigating the effect of cold on the possibility of storing pupae and whole insects of parasitoid bees. Entomology and Applied Science Letters,10(3): 51-59. https://doi.org/10.51847/27QmmdcVwl
 
Leopold RA. 2007. Colony maintenance and mass-rearing: Using cold storage technology for extending the shelf-life of insects. Area-wide control of insect pests: From research to field implementation 2007 Oct 30 (pp. 149-162). Dordrecht: Springer Netherlands.
 
Lettmann J, Mody K, Kursch-Metz T-A, Blüthgen N and Wehner K. 2021. Bracon wasps for ecological pest control–a laboratory experiment. PeerJ 9:e11540. https://doi.org/10.7717/peerj.11540
 
Lin J, Yang D, Hao X, Cai P, Guo Y, Shi S, Liu C and Ji Q. 2021. Effect of cold storage on the quality of Psyttalia incisi (Hymenoptera: Braconidae), a larval parasitoid of Bactrocera dorsalis (Diptera: Tephritidae). Insects, 12, 558. https://doi.org/10.3390/insects 12060558
 
Lundgren JG and Heimpel GE. 2002. Quality assessment of three species of commercially produced Trichogramma and the first report of thelytoky in commercially produced Trichogramma. Biological Control, 26: 68-73. https://doi.org/10.1016/S1049-9644(02)00117-2
 
Maia AHN, Luiz AJB and Campanhola C. 2000. Statistical inference on associated fertility life table parameters using jackknife technique: computational aspect. Journal Economic Entomology, 93: 511-518. https://doi.org/10.1603/0022-0493-93.2.511
 
Mansour AN. 2017. Influence of cold storage on some biological aspects of the gregarious parasitoid, Bracon hebetor (Say) (Hymenoptera: Braconidae). Egyptian Journal of Biological Pest Control, 27(2): 205-210. https://doi/pdf/10.5555/20173278348
 
Margus A and Lindström L. 2020. Prolonged diapause has sex-specific fertility and fitness costs. Evolutionary Ecology, 34: 41–57. https://doi.org/10.1007/s10682-019-10024-1
 
Mbata GN and Warsi S. 2019. Habrobracon hebetor and Pteromalus cerealellae as tools in post-harvest integrated pest management. Insects, 10, 85: 1-12; https://doi:10.3390/insects10040085
 
Mohaghegh J and Amir-Maafi M. 2007. Reproduction of the predatory stinkbug Andrallus spinidens (F.) (Heteroptera: Pentatomidae) on live and frozen prey. Applied Entomology and Zoology, 42: 15–20.
 
Mokhber A, Amoui AM, Charkame N and Taghikhani N. 2015. Entrepreneurship package for the production of biological agents, construction of an insectarium for Bracon hebetor in order to be used in the biological control of medicinal plant farms. Israr al-Alam Publications. Tehran Iran. 54 p. (In Persian).
 
Mousapour Z, Askarianzadeh A and Abbasipour H. 2015. Cold storage of adult parasitoid wasp, Habrobracon hebetor (Say) (Hymenoptera: Braconidae) and the flour moth larvae, Anagasta kuehniella (Zeller) at 12°C. Plant Pest Research, 5(3): 17-29. (In Persian).
 
Noosidum A, Somsri W and Chandrapatya A. 2018. Effect of cold storage on development of Habrobracon hebetor (Say) (Braconidae: Hymenoptera) reared on Corcyra cephalonica Stainton (Lepidoptera: Pyralidae). Walailak Journal of Science and Technology (WJST), 17(2): 128–138.
 
Poinar GO. 1975. Entomogenous nematodes. Leiden, Netherlands, EJ Bill.
 
Qiu R, Li J, Desneux N, Zang L, He X and Lü X. 2024. Dual effects of cold storage and stored host eggs of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) on the reproductive capacity of Telenomus remus Nixon (Hymenoptera: Scelionidae). Insects, 15, 233. https://doi.org/10.3390/insects15040233
 
Rathee M and Ram P. 2018. Impact of cold storage on the performance of entomophagous insects: an overview. Phytoparasitica, 46: 421-449. https://doi.org/10.1007/s12600-018-0683-5
 
Saadat D, Asghar Seraj AA, Goldansaz SH and Williams L. 2016. Factors affecting reproductive success and life history parameters of Bracon hebetor Say (Hymenoptera: Braconidae) from three host-associated populations. Biological Control, 96: 86-92. https://doi.org/10.1016/j.biocontrol.2016.02.008
 
Sahayaraj K and Jeyalekshmi T. 2002. Mass rearing of Rhynocoris marginatus Fab. on live and frozen larvae of Corcyra cephalonica Stainton. Entomologica Croatica, 6: 35–49.
 
SAS Institute, 2006: SAS/STAT User's Guide, Version 9.2. SAS Institute Inc., Cary, NC.
 
Siam A, Zohdy NZM, ELHafez AMA, Moursy LE and Sherif HAEL. 2019. Effect of different cold storage periods of rearing host eggs on the performance of the parasitoid Trichogramma evanescens (Westwood) (Hymenoptera: Trichogrammatidae). Egyptian Journal of Biological Pest Control, 29: 34.
 
Sinclair BJ. 2015. Linking energetics and overwintering in temperate insects. Journal of Thermal Biology, 54: 5–11. https://doi.org/10.1016/j.jtherbio.2014.07.007
 
Tezze AA and Botto EN. 2004. Effect of cold storage on the quality of Trichogramma nerudai (Hymenoptera: Trichogrammatidae). Biological Control, 30(1): 11-6. https://doi.org/10.1016/j.biocontrol.2003.09.008
 
Vaez N, Mohammadi D and Pourgoli Z. 2019. The role of host storage in the quality of Trichogramma brassicae Bezdenko. Journal of Applied Research in Plant Protection, 8(1): 71-95 (In Persian).
 
Vaez N, Pourgoli Z and Mohammadi D. 2018. Influences of cold storage period of Anagasta kuehnieela (Zeller) eEggs on biological parameters of Trichogramma brassicae Bezdenko. Journal of Applied Research in Plant Protection, 7(2): 145-162 (In Persian).
 
van Lenteren, JV and Tommasini MG. 2003. Mass production, storage, shipment and release of natural enemies. In van Lenteren, JC. (Ed.). Quality control and production of biological control agents: theory and testing procedures. Wallingford UK: CABI publishing. pp. 181-189.
 
Visser B, Le Lann C, den Blanken FJ, Harvey JA, van Alphen JJM and Ellers J. 2010. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 107: 8677–8682. https://doi.org/10.1073/pnas.100174410
 
Wanderley EA, Ramalho ES, Zanuncio JC and Leite GLD. 2007.  Thermal requirements and development of Bracon vulgaris, a parasitoid of the cotton boll weevil. Entomology, 35(4): 336-345.
 
Warsi S and Mbata GN. 2018. Impact of peanut depth and container size on the parasitism of diapausing and nondiapausing larvae of Indian meal moth (Lepidoptera: Pyralidae) by Habrobracon hebetor (Hymenoptera: Braconidae)," Environmental Entomology, 47(5): 1226-1232.
 
Warsi S and Mbata GN. 2018. Impact of peanut depth and container size on the parasitism of diapausing and nondiapausing larvae of Indian meal moth (Lepidoptera: Pralidae) by Habrobracon hebetor (Hymenoptera: Braconidae). Environmental Entomology, 47: 1226–1232.
 
Warsi S, Mbata GN and Payton ME. 2018. Improvement of reproductive performance of Habrobracon hebetor: consideration of diapausing and nondiapausing larvae of Plodia interpunctella. Biological Control, 118: 32–36. https://doi.org/10.1016/j.biocontrol.2017.12.003
 
Xing B, Yang L, Gulinuer A, Li F and Wu S. 2022. Effect of pupal cold storage on reproductive performance of Microplitis manila (Hymenoptera: Braconidae), a larval parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects, 13, 449.  https://doi.org/10.3390/insects13050449
Zandi-Sohani N and Tamoli Torfi E. 2024. Effect of cold storage on biological and morphological characteristics of the parasitoid wasp, Aenasius bambawalei (Hym.: Encyrtidae). Plant Pest Research, 14(1): 61-72. (In Persian). https://doi.org/10.22124/iprj.2024.27090.1568