بررسی کارایی مصرف انرژی، انتشار گازهای گلخانه‌ای و تحلیل‌های اقتصادی زراعت سورگوم علوفه‌ای در منطقه سیستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بوم شناسی زراعی، گروه زراعت، دانشگاه زابل

2 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل

چکیده

مصرف انرژی و استفاده صحیح از نهاده‌های کشاورزی تاثیر زیادی بر اقتصاد و حفظ محیط زیست دارد. این تحقیق به بررسی کارایی مصرف انرژی، میزان انتشار گازهای گلخانه‌ای و هزینه‌های مصرفی سیستم‌های تولید سورگوم در منطقه سیستان پرداخته است. اطلاعات از طریق پرسشنامه و مصاحبه حضوری با کشاورزان از 85 مزرعه سورگوم در سال 2014 جمع‌آوری گردید. نتایج این بررسی نشان داد که مجموع انرژی ورودی در سیستم‌های تولید سورگوم 06/37695 مگاژول در هکتار بود که از این مقدار الکتریسیته پر‌مصرف‌ترین نهاده ورودی در بین سایر نهاده‌ها بود. پس از الکتریسیته به ترتیب کودهای شیمیایی و گازوئیل قرار داشتند. سهم انرژی‌های ورودی به صورت مستقیم، غیر‌مستقیم، تجدید‌پذیر و تجدید‌ناپذیر به ترتیب 79، 21، 22 و 78 درصد بود. کارایی مصرف انرژی نیز در این مزارع 3/7 بدست آمد. الکتریسیته با 27/2981 کیلوگرم در هکتار گاز گلخانه‌ای معادل دی اکسید کربن، بیشترین میزان انتشار گازهای گلخانه‌ای را از مجموع 7/3746 کیلوگرم در هکتار گاز گلخانه‌ای معادل دی اکسید کربن به خود اختصاص داد و به دنبال آن کود دامی و گازوئیل بیشترین میزان آلودگی را ایجاد ‌کردند. نتایج تحلیل‌های اقتصادی نیز نشان داد که متوسط هزینه‌های انجام شده برای یک هکتار محصول سورگوم 5/29 میلیون ریال بود و بطور میانگین سود خالصی برابر 8/5 میلیون ریال به ازای هر هکتار عاید کشاورز شد. مدیریت انرژی یک عامل کلیدی برای کاهش مصرف انرژی، کاهش آلودگی‌های زیست محیطی و کاهش هزینه‌های تولید در مزارع می‌باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Energy Use Efficiency, Green House Gases Emission and Economic Analysis of Sorghum Production in Sistan

نویسندگان [English]

  • Fatemeh Fartout Enayat 1
  • Seyed Mohsen Mousavinik 2
  • Mohammad Reza Asgharipour 2
چکیده [English]

Energy consumption and application of agricultural inputs have a significant effect on the economy and the environmental consevation. This study examines the energy efficiency, GHGs emissions and production costs of sorghum production systems in the Sistan. Data were collected from 85 sorghum farms using face to face questionnaires in 2014. Results indicated that the total energy input was 37,695.1 MJ.ha-1, and the most important energy inputs belonged to electricity, followed by chemical fertilizers and diesel fuel. The share of direct, indirect, renewable and non-renewable forms in sorghum production were 79%, 21%, 22% and 78, respectively. Also, energy use efficiency was 7.3. Electricity with a production of 2981.3 kg CO2-eq.ha-1 played the most important role on the total GHGs emission of 3746.7 kg CO2-eq.ha-1 and it was followed by manure and diesel fuel. Economic analysis indicated that the total cost and the average net return of sorghum production was 29.5 and 5.8 million Rial.ha-1, respectively. Energy use efficiency was 13.4, while the benefit-to-cost ratio was 1.3. Energy management is a key factor for reduction of energy consumption, environmental pollution and the cost of production in the fields.
 

کلیدواژه‌ها [English]

  • Energy consumption and application of agricultural inputs have a significant effect on the economy and the environmental consevation. This study examines the energy efficiency
  • GHGs emissions and production costs of sorghum production systems in the Sistan. Data were collected from 85 sorghum farms using face to face questionnaires in 2014. Results indicated that the total energy input was 37
  • 695.1 MJ.ha-1
  • and the most important energy inputs belonged to electricity
  • followed by chemical fertilizers and diesel fuel. The share of direct
  • indirect
  • renewable and non-renewable forms in sorghum production were 79%
  • 21%
  • 22% and 78
  • respectively. Also
  • energy use efficiency was 7.3. Electricity with a production of 2981.3 kg CO2-eq.ha-1 played the most important role on the total GHGs emission of 3746.7 kg CO2-eq.ha-1 and it was followed by manure and diesel fuel. Economic analysis indicated that t
  • respectively. Energy use efficiency was 13.4
  • while the benefit-to-cost ratio was 1.3. Energy management is a key factor for reduction of energy consumption
  • environmental pollution and the cost of production in the fields. Keywords: Energy Consumption
  • GHGs Emissions
  • Global Warming
  • Environmental Pollution
  • Sistan
Asgharipoure MR, Mondani F and Riahinia Sh, 2012. Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province. Energy, 44: 1078-1084.
Banaeian N, Omid M and Ahmadi H, 2011. Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Conversion and Management, 52: 1020-1025.
Bazoubandi A, Barzegar AB and Bakhtiari S, 2014. Evaluation of energy efficiency in different nutritional system of maize cultivars in Neishabour. The First National Conference on Sustainable Ecosystem and Development. May 18, 2014. Arak. (In Persian).
Darvin R, Tsigas M, Lewandrowski J and Raneses A, 1995. World agriculture and climate change: Economic adaptations, Natural Resources and Environment Division. Economic Research Service, U.S. Department of Agricultural Economy.
Dyer JA and Desjardins RL, 2006. Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosystem Engineering, 93: 107-118.
Esengun K, Gunduz O and Erdal G, 2007. Input–output energy analysis in dry apricot production of Turkey. Energy Conversion and Management, 48: 592-598.
Ghasemi Mobtaker H, Keyhani AR, Mohammadi A, Rafiee Sh and Akram A, 2010. Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems and Environment, 137: 367-372.
Hatirli SA, Ozkan B and Fert C, 2006. Energy inputs and crop yield relationship in greenhouse tomato productionRenewable Energy, 37: 427-438.
Ho JA, 2011. Calculation of the carbon footprint of Ontario wheat. Guelph Publication, 4: 49-55.
Intergovernmental Panel on Climate Change (IPCC), 2007. Summary for PolicyMakers. The Physical Science Basis. Camb. Univ. Press. ISBN 0-444-42753-8, 7: 165-177
Kaltsas AM, Mamolos AP, Tsatsarelis CA, Nanos GD and Kalburtji KL, 2007. Energy budget in organic and conventional olive groves. Agric. Ecosyst. Environ, 122: 243-251.
Kizilaslan H, 2009. Input–output energy analysis of cherries production in Tokat Province of Turkey. Applied Energy, 86: 1354-1358.
Kocheki A and Hosseini M, 1994. Energy efficiency in agricultural ecosystems. Ferdowsi University of Mashhad Publication. (In Persian).
Lal R, 2004. Carbon emission from farm operations. Environment International, 30: 981-990.
Liu L, Langer V, Høgh-Jensen H and Egelyng H, 2010. Life Cycle Assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. Journal of Cleaner Production, 18: 1423-1430.
Mohammadi A and Omid M, 2010. Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Applied Energy, 87: 191-196.
Mohammadi A, Tabatabaeefar A, Shahin Sh, Rafiee Sh and Keyhani AR, 2008. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Conversion and Management, 49: 3566-3570.
Mohammadi H, Mousavi SN, Kafilzadeh F and Rahmati M. 2005. Productivity of factors and production inputs in sugar beet farms in Eghlid. Sugar beet, 21: 31-41. (In Persian).
Mousavi-Avval H, Rafiee Sh, Jafari A and Mohammadi A, 2011. Energy flow modeling and sensitivity analysis of inputs for canola production in Iran. Journal of Cleaner Production, 19: 1464-1470.
Nikkhah M, Emadi B, Shabanian F and Hamze Kolaknari H, 2014. Evaluation of energy sensitivity and greenhouse gas production of tea production in Guilan Province. Journal of Agroecology, 6 (3): 622-633. (In Persian).
Ozkan B, Akcaoz H and Fert C, 2004. Energy input-output analysis in Turkish agriculture. Renewable Energy, 29: 39-51.
Pishgar-Komleh SH, Ghahderijani M and Sefeedpari P, 2012. Energy consumption and CO2 emissions analysis of potato production based ondifferent farm size levels in Iran. Journal of Cleaner Production, 33: 183-191.
Pishgar-Komleh SH, Sefeedpari P and Rafiee S, 2011. Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy, 36: 5824-5831.
Pourshirazi Sh, Resam GA, Dadkhah AR and Gholami MR, 2013. Analysis of energy flow and greenhouse gas emissions in Northeastern farms of Iran. First National Conference on Engineering, Agricultural Management, Environment and Sustainable Natural Resources. March 22, 2013. Hamadan. (In Persian).
Rafiee Sh, Mousavi Avval SH and Mohammadi A, 2010. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy, 35: 3301-3306.
Rajabi Hamedani S, Shabani Z and Rafiee Sh, 2011. Energy inputs and crop yield relationship in potato production in Hamadan province of Iran. Energy, 36: 2367-2371.
Royan M, Khojastehpour M, Emadi B and Ghasemi Mobtaker H, 2012. Investigation of energy inputs for peach production using sensitivity analysis in Iran. Energy Conversion and Management, 64: 441-446.
Salari Sardari F and Kiani A, 2009. Investigating the Climate Impact on the Sustainability of the Physical Environment of Zabol. Conference on Geography and Sustainable Development, Islamic Azad University, Shirvan Branch. January 19, 2009. Shirvan. (In Persian).
Samavatean N, Rafiee SH, Mobli H and Mohammadi A, 2011. An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran. Renewable Energy, 36: 1808-1813
Singh G, Singh S and Singh J, 2004. Optimization of energy inputs for wheat crop in Punjab. Energy Conversation and Management 45: 453–465.
Soboti Y, 2011. The Warm Earth, Commemorating of 21st Century. Gitashnessi Publications of Tehran. (In Persian).
Taylor EB, O’Callaghan PW and Probert SD, 1993. Energy audit of an English farm. Applied Energy, 44: 315-335.
Yilmaz I, Akcaoz H and Ozkan B, 2005. An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy, 30: 145-155.