ارزیابی عملکرد و نیاز آبی ذرت دانه‎ای در واکنش به تغییر تاریخ کشت تحت شرایط تغییر اقلیم در استان کرمانشاه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس

2 گروه کشاورزی اکولوژیک، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی

چکیده

به‌منظور بررسی عملکرد و نیاز آبی ذرت دانه‌ای در تاریخ کشت‎های مختلف تحت دو سناریوی انتشار گازهای گلخانه‎ای در سه شهرستان استان کرمانشاه (کرمانشاه، کنگاور و اسلام‌آباد غرب )، از مدل APSIM و برای پیش‎بینی پارامترهای اقلیمی نیز از روش ارایه شده توسط AgMIP استفاده شد. نتایج این تحقیق نشان داد که از دلایل افت شدید عملکرد می‎توان به افزایش دما در طول فصل رشد (7/15 درصد)، کاهش طول فصل رشد (7/4 درصد) و احتمالاً برخورد زمان گل‎دهی با وقوع دماهای آستانه اشاره کرد. نیاز آبی ذرت نیز در همه مناطق، سناریوها و تاریخ­های کاشت‎ به‌طور میانگین 14 درصد نسبت به دوره پایه افزایش خواهد یافت که از دلایل این امر می‎توان به افزایش دما (7/15 درصد) اشاره نمود. در تاریخ کاشت مرسوم (15 اردیبهشت) در مناطق مورد بررسی، نیاز آبی ذرت تحت هر دو سناریو 12 درصد نسبت به دوره پایه افزایش نشان داد، در حالی که در تاریخ کاشت­های زودتر و دیرتر نیاز آبی ذرت به ترتیب 15 و 7 درصد افزایش یافت. با توجه به بارش تجمعی بیشتر در طول فصل رشد (27/54 میلی‎متر) در کشت‎های زودهنگام (16 فروردین و 31 فروردین) و همچنین افت عملکرد کمتر در مقایسه با دیگر تاریخ­های کشت‎ (56 درصد)، می‎توان از کشت‎ زودهنگام به عنوان راهکار سازگاری برای استفاده از بارش‎های فصلی و دستیابی به عملکرد قابل قبول استفاده کرد. نتایج نشان داد در بین مناطق مورد مطالعه، مناسب‎ترین منطقه کشت ذرت از نظر عملکرد دانه  و نیاز آبیاری اسلام آباد غرب (8/4221 کیلوگرم در هکتار) و کرمانشاه (2/1489 میلی‎متر) بودند.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Yield and Crop Water Requirement in Response to Change of Planting Date under Climate Change Conditions in Kermanshah Province

نویسندگان [English]

  • Hamed Eyni Nargeseh 1
  • Sajad Rahimi Moghaddam 2
  • Reza Deihimfard 2
  • Ali Mokhtassi-Bidgoli 1
چکیده [English]

APSIM model was used to investigate yield and water requirement of maize in different planting dates under two emission scenarios (RCP4.5 and RCP8.5) at the three locations of Kermanshah province (Kermanshah, Kangavar and Eslamabad-Gharb). Climatic parameters were predicted using the AgMIP methodology. Results of this study indicated that in the future, average maize grain yield will be reduced in all locations, scenarios and planting dates (70 percent) compare to the baseline. Reasons for yield loss are increasing temperature over growing season (15.7%), decreasing length of growing season (4.7%) and is likely to concurrency time of flowering with extreme temperature. In addition, maize water requirement, on average, will be increased 14 percent is comparison to the baseline in all locations, scenarios and planting dates mainly due to rising temperature. In conventional planting date (4 May), crop water requirement of maize on average increased 12 percent under two emission scenarios compared with the baseline while on earlier and later planting dates, crop water requirement increased 15 and 7 percent, respectively. Due to the amount of higher cumulative rainfall during the growing season (54.27) on earlier planting dates (4 and 19 April) as well as lower yield loss compare to other planting dates (56 percent), earlier planting dates can be explained as adaptation strategy in order to achieve appropriate yield. The results also showed that among study locations, Eslamabad-Gharb and Kermanshah were the most suitable areas in terms of grain yield (4221.8 Kg.ha-1) and water requirement (1489.2 mm), respectively.
 

کلیدواژه‌ها [English]

  • Crop Model
  • Climate Scenario
  • evapotranspiration
  • Grain Yield
  • Agmip
Abraha MG, and Savage MJ, 2006. Potential impacts of climate change on the grain yield of maize for the midlands of KwaZulu-Natal, South Africa. Agriculture, Ecosystems and Environment, 115:150–160.
AgMIP. 2013a. Guide for Running AgMIP Climate Scenario Generation Tools with R in Windows. AgMIP, URL: http://www.agmip.org/wp-content/uploads/2013/ 10/Guide -for- Running-AgMIP-Climate-Scenario-Generation-with-R-v2.3.pdf
AgMIP. 2013b. The coordinated climate-crop modeling project c3mp: an initiative of the agricultural model intercomparison and improvement project. C3MP Protocols and Procedures. AgMIP, URL:http://research.agmip.org/ download/attachments/1998899/C3MP+Protocols+v2.pdf
Alizadeh A, Sayari N, Hesami Kermani MR, Bannayan Aval M, and Farid Hossaini A, 2010. Assessment of climate change potential impacts on agricultural water use and water resources of kashaf rood basin. Journal of Water and Soil, 24(4): 815-835. (In Persian).
Araya A, Hoogenboom G, Luedeling E, Hadgu KM, Kisekka I, and Martorano LG, 2015. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agricultural and Forest Meteorology, 214: 252-265.
Dupuis I, and Dumas C, 1990. Influence of temperature stress on in vitro fertilisation and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 94: 665–670.
Eyni Nargeseh H, Deihimfard R, Soufizadeh S, Haghighat M, and Nouri O, 2016. Predicting the impacts of climate change on irrigated wheat yield in Fars province using APSIM model. Electronic Journal of Crop Production, 8(4): 203-224. (In Persian).
Eyshi Rezaie E, and Bannayan M, 2012. Rainfed wheat yields under climate change in northeastern Iran. Meteorological Applications, 19: 346– 354.
Gohari A, Eslamian S, Abedi- Koupaei J, Massah Bavani A, and Wang D, and Madani K, 2013. Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin. Science of the Total Environmente, 442: 405-419.
Herrero MP, and Johnson RR, 1980. High temperature stress and pollen viability in maize. Crop Science, 20: 796–800.
Hoogenboom G, Jones JW, Porter CH, Wilkens PW, Boote KJ, Batchelor WD, Hunt LA, and Tsuji GY, (Editors). 2003. Decision Support System for Agrotechnology Transfer Version 4.0. Vol. 1: Overview. University of Hawaii, Honolulu, HI.
Ibrahim M, Ouda S, Taha A, El Afandi G, and Eid SM, 2012. Water management for wheat grown in sandy soil under climate change conditions. Journal of Soil Science and Plant Nutrient, 12(2): 195-210.
Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, and Smith C.J, 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18: 267– 288.
Lashkari A, Alizadeh A, Eyshi Rezaei E, and Bannayan M, 2012. Mitigation of climate change impacts on Maize productivity in northeast of Iran: a simulation study. Mitigation and Adaptation Strategies for Global Change. 17:1-16.
Laux P, Jachel G, Tingem RM, and Kunstmann H, 2010. Impact of climate change on agricultural productivity under rainfed conditions in Cameroon—A method to improve attainable crop yields by planting date adaptations. Agricultural and Forest Meteorology, 150: 1258-1271.
Lobell DB, Hammer GL, Chenu K, Zheng, B, McLean G, and Chapman SC, 2015. The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology. 21: 4115-4127.
Luo Q, Bellotti W, Williams M, and Wang E, 2009. Adaptation to climate change of wheat growing in
South Australia: Analysis of management and breeding strategies. Agriculture, Ecosystems and Environment, 129:261–267.
Lv Z, Lio X, Cao W, and Zhu Y, 2013. Climate change impacts on regional winter wheat production in main wheat production regions of China. Agricultural and Forest Meteorology, 171-172: 234-248.
Manschadi AM, Soufizadeh S, and Deihimfard R, 2010. The role and importance of simulation modeling in improving crop production in Iran. Key paper in the 11th Iranian Crop Science Congress, 234-247.
Mera RJ, Niyogi D, Buol GS, Wilkerson GG, and Semazzi FHM, 2006. Potential individual versus simultaneous climate change effects on soybean (C3) and maize (C4) crops: An agrotechnology model based study. Global and Planetary Change, 54: 163–182.
Ministry of Agriculture-Jahad, 2015. Agricultural statistics, 2013-2014, volume 1. Available at: http://www.maj.ir/Portal/Home/.pdf
Moradi R, koocheki A, Nassiri Mahallati M, and Mansoori H, 2013. Adaptation strategies for maize cultivation under climate change in Iran: irrigation and planting date management. Mitigation and Adaptation Strategies for Global Change, 18: 265-284.
Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR., Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, and Wilbanks T, 2010. The next generation of scenarios for climate change. Nature, 463: 747-756.
Nehbandani AR, and Soltani A, 2016. Simulate the effect of climate change on development, irrigation requirements and soybean yield in Gorgan. Journal of Water and Soil, 30(1): 77-87. (In Persian).
Noreldin T, Ouda S, and bou Elenein R, 2013. Development of management practices to address wheat vulnerably to climate change in north Delta. 11th International Conference on Development of Dry Lands. 18-21 March. Beigin, China.
Ouda S, Noreldin T, and El-Latif KhA, 2015. Water requirements for wheat and maize under climate change in North Nile Delta. Spanish Journal of Agricultural Research, 13 (1). 1-10.
Ouda S, Sayed M, El Afandi G, and Khalil F, 2010. Developing an adaptation strategy to reduce climate change risks on wheat grown in sandy soil in Egypt. 10th International Conference on Development of Dry Lands. 12-15 December. Cairo, Egypt.
Prescott JA, 1940. Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64: 114-118.
Rahimi D, and Salahshour F, 2014. Estimation of water requirement, evaporation and potential transpiration of brassica napus l plant in Ahwaz town using crowpwat model. International Journal of Advanced Biological and Biomedical Research, 2(4):1377-1387.
Rahimi Moghaddam S, Kambouzia J, and Deihimfard R, 2016. Simulating the impacts of climate change on maize yield in Khozestan province using future climate scenarios generated by AgMIP methodology. 2nd international &14th national Iranian Crop Science Congress. 30 Agust-1 September. Gilan, Iran.
Rahmani M, Jami Al-Ahmadi M, Shahidi A, and Hadizadeh Azghandi M, 2016. Effects of climate change on length of growth stages and water requirement of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) (Case study: Birjand plain). Journal of Agroecology, 7(4):443-460. (In Persian).
Ruane AC, Cecil LD, and Horton RM, 2013. Climate change impact uncertainties for maize in Panama: farm information, climate projections, and yield sensitivities. Agricultural and Forest Meteorology,  170: 132–145.
Schoper JB, Lambert RJ, Vasilas BL, and Westgate ME, 1987. Plant factors controlling seed set in maize the influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant Physiology, 83: 121-125.
Singh V, Nguyen CT, van Oosterom EJ, Chapman SC, Jordan DR, and Hammer GL, 2015. Sorghum genotypes differ in high temperature responses for seed set. Field Crops Research, 171: 32-40.
Singh V, Nguyen CT, Yang Z, Chapman SC, van Oosterom EJ, and Hammer GL, 2016. Genotypic differences in effects of short episodes of high-temperature stress during reproductive development in sorghum. Crop Science, 56: 1–12.
Stone P, 2001. The effects of heat stress on cereal yield and quality. In Crop Responses and Adaptations to Temperature Stress (ed. A.S. Basra), pp. 243–291. Food Products Press, Binghamton, NY, USA.
Tao F, and Zhang Z, 2010. Adaptation of maize production to climate change in North China Plain: quantify the relative contributions of adaptation options. European Journal of Agronomy, 33:103–16.
Tingem M, and Rivington M, 2009. Adaptation for crop agriculture to climate change in Cameroon: Turning on the heat. Mitigation and Adaptation Strategies for Global Change, 14: 153–168.
Tojo Soler CM, Sentelhas PC, and Hoogenboom G, 2007. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. European Journal of Agronomy, 27:165–77.
Wall BH "TAMET", 1977. Computer program for processing meteorological data." CSIRO Australia. Division of Tropical Crops and Pastures.Tropical Agronomy Technical Memorandum, 4, 13p.
Wang B, Liu DL, Asseng S, Macadam I, Yu Q, 2015. Impact of climate change on wheat flowering time in eastern Australia. Agricultural and Forest Meteorology, 209-210: 11-21.
Wang J, Wang E, and Liu DL, 2011. Modelling the impact of climate change on wheat yield and field water balance over the Murry-Darling Basin in Australia. Theoretical and Applied Climatology, 104:285–300.
Wayne G.P, 2013. The beginner’s guide to representative concentration pathways. Skeptical Sci., URL: http://www.skepticalscience.com/docs/RCP Guide.
Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, and Mearns LO, 2004. Guidelines for use of climate scenarios developed from statistical downscaling methods. In: IPCC Task Group on Data and Scenario Support for Impacts and Climate Analysis.
Yang Y, Liu DL, Rajin Anwar M, Leary G, Macadam I, and Yang Y, 2016. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: sensitivity of future changes to projected climate changes and soil type. Theoretical and Applied Climatology, 123:565-579.